
12/03/14	

1	

Describing embedded system’s
processing behavior

Outline

o  Models vs. Languages
o  State Machine Model

n  FSM/FSMD
n  HCFSM and Statecharts Language
n  Program-State Machine (PSM) Model

o  Concurrent Process Model
n  Communication
n  Synchronization
n  Implementation

o  Real-Time Systems

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

2	

Introduction

o  Describing embedded system’s processing
behavior
n  Can be extremely difficult

o  Complexity increasing with increasing IC capacity
n  Past: washing machines, small games, etc.

§  Hundreds of lines of code
n  Today: TV set-top boxes, Cell phone, etc.

§  Hundreds of thousands of lines of code
o  Desired behavior often not fully understood in beginning

n  Many implementation bugs due to description mistakes/
omissions

n  English (or other natural language) common starting
point
o  Precise description difficult to impossible
o  Example: Motor Vehicle Code – thousands of pages long...

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

An example of trying to be precise in
English

o  California Vehicle Code
n  Right-of-way of crosswalks

o  21950. (a) The driver of a vehicle shall yield the right-of-way to a
pedestrian crossing the roadway within any marked crosswalk or
within any unmarked crosswalk at an intersection, except as
otherwise provided in this chapter.

o  (b) The provisions of this section shall not relieve a pedestrian
from the duty of using due care for his or her safety. No
pedestrian shall suddenly leave a curb or other place of safety and
walk or run into the path of a vehicle which is so close as to
constitute an immediate hazard. No pedestrian shall unnecessarily
stop or delay traffic while in a marked or unmarked crosswalk.

o  (c) The provisions of subdivision (b) shall not relieve a driver of a
vehicle from the duty of exercising due care for the safety of any
pedestrian within any marked crosswalk or within any unmarked
crosswalk at an intersection.

n  All that just for crossing the street (and there’s much more)!

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

3	

Models and languages

o  How can we (precisely) capture behavior?
n  We may think of languages (C, C++), but computation

model is the key
o  Common computation models:

n  Sequential program model
o  Statements, rules for composing statements, semantics for

executing them
n  Communicating process model

o  Multiple sequential programs running concurrently
n  State machine model

o  For control dominated systems, monitors control inputs, sets
control outputs

n  Dataflow model
o  For data dominated systems, transforms input data streams

into output streams
n  Object-oriented model

o  For breaking complex software into simpler, well-defined
pieces

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Models vs. languages

o  Computation models describe system behavior
n  Conceptual notion, e.g., recipe, sequential program

o  Languages capture models
n  Concrete form, e.g., English, C

o  Variety of languages can capture one model
n  E.g., sequential program model à C,C++, Java

o  One language can capture variety of models
n  E.g., C++ → sequential program model, object-oriented model, state

machine model
o  Certain languages better at capturing certain computation models

Models

Languages

Recipe

Spanish English Japanese

Poetry Story Sequent.
program

C++ C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

4	

Text versus Graphics

o  Models versus languages not to be confused with
text versus graphics
n  Text and graphics are just two types of languages

o  Text: letters, numbers
o  Graphics: circles, arrows (plus some letters, numbers)

X = 1;
Y = X + 1;

 X = 1

 Y = X + 1

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Introductory example: An elevator
controller

o  Simple elevator controller
n  Request Resolver resolves various floor requests into

single requested floor
n  Unit Control moves elevator to this requested floor

o  Try capturing in C...

“Move the elevator either up or down to
reach the requested floor. Once at the
requested floor, open the door for at least
10 seconds, and keep it open until the
requested floor changes. Ensure the door
is never open while moving. Don’t change
directions unless there are no higher
requests when moving up or no lower
requests when moving down…”

Partial English description

buttons
inside
elevator

Unit
Control

b1

down

open

floor

..

.

Request
Resolver

..

.

up/
down
buttons
on each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System
interface

up3
dn3

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

5	

Elevator controller using a sequential
program model

“Move the elevator either up
or down to reach the
requested floor. Once at the
requested floor, open the door
for at least 10 seconds, and
keep it open until the
requested floor changes.
Ensure the door is never open
while moving. Don’t change
directions unless there are no
higher requests when moving
up or no lower requests when
moving down…”

Partial English
description

buttons
inside
elevator

Unit
Control

b1

down

open

floor

..

.

Request
Resolver

..

.

up/
down
buttons
on each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3

Sequential program model

void UnitControl()
{
 up = down = 0; open =
1;
 while (1) {
 while (req == floor);
 open = 0;
 if (req > floor) { up =
1;}
 else {down = 1;}
 while (req != floor);
 up = down = 0;
 open = 1;
 delay(10);
 }
}

void
RequestResolver()
{
 while (1)
 ...
 req = ...
 ...
}
void main()
{
 Call concurrently:
 UnitControl()
and

RequestResolver()
}

Inputs: int floor; bit b1..bN; up1..upN-1;
dn2..dnN;
Outputs: bit up, down, open;
Global variables: int req;

You might have come up with
something having even more if
statements.

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Finite-state machine (FSM) model

o  Trying to capture this behavior as sequential
program is a bit awkward

o  Instead, we might consider an FSM model,
describing the system as:
n  Possible states

o  E.g., Idle, GoingUp, GoingDn, DoorOpen
n  Possible transitions from one state to another based on

input
o  E.g., req > floor

n  Actions that occur in each state
o  E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1,

down, open, and timer_start = 0)
o  Try it...

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

6	

Finite-state machine (FSM) model

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

UnitControl process using a state machine

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Formal definition

o  An FSM is a 6-tuple F<S, I, O, F, H, s0>
n  S is a set of all states {s0, s1, …, sl}
n  I is a set of inputs {i0, i1, …, im}
n  O is a set of outputs {o0, o1, …, on}
n  F is a next-state function (S x I → S)
n  H is an output function (S → O)
n  s0 is an initial state

o  Moore-type
n  Associates outputs with states (as given above, H maps S →

O)
o  Mealy-type

n  Associates outputs with transitions (H maps S x I → O)
o  Shorthand notations to simplify descriptions

n  Implicitly assign 0 to all unassigned outputs in a state
n  Implicitly AND every transition condition with clock edge (FSM

is synchronous)

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

7	

Finite-state machine with datapath model
(FSMD)

o  FSMD extends FSM: complex data types and variables for storing data
n  FSMs use only Boolean data types and operations, no variables

o  FSMD: 7-tuple <S, I , O, V, F, H, s0>
n  S is a set of states {s0, s1, …, sl}
n  I is a set of inputs {i0, i1, …, im}
n  O is a set of outputs {o0, o1, …, on}
n  V is a set of variables {v0, v1, …, vn}
n  F is a next-state function (S x I x V → S)

n  H is an action function (S → O + V)

n  s0 is an initial state

o  I,O,V may represent complex data types (i.e., integers, floating point, etc.)
o  F,H may include arithmetic operations
o  H is an action function, not just an output function

n  Describes variable updates as well as outputs
o  Complete system state now consists of current state, si, and values of all

variables

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t =
0,0,1,1

u is up, d is down, o is open

req ==
floor

!(req<floor)

timer < 10

t is timer_start

We described UnitControl as an FSMD

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Describing a system as a state machine

2. Declare all variables (none in this example)

3. For each state, list possible transitions, with conditions, to other states
4. For each state and/or transition,

list associated actions
5. For each state, ensure exclusive

and complete exiting transition
conditions
•  No two exiting conditions can

be true at same time
–  Otherwise nondeterministic

state machine
•  One condition must be true at

any given time
–  Reducing explicit transitions

should be avoided when first
learning

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t =
0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

1. List of possible states

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

8	

State machine vs. sequential program
model

o  Different thought process used with each model
o  State machine:

n  Encourages designer to think of all possible states and
transitions among states based on all possible input conditions

o  Sequential program model:
n  Designed to transform data through series of instructions that

may be iterated and conditionally executed
o  State machine description excels in many cases

n  More natural means of computing in those cases
n  Not due to graphical representation (state diagram)

o  Would still have same benefits if textual language used (i.e., state
table)

o  Besides, sequential program model could use graphical
representation (i.e., flowchart)

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Try Capturing Other Behaviors with an
FSM

o  E.g., Answering machine blinking light when
there are messages

o  E.g., A simple telephone answering machine that
answers after 4 rings when activated

o  E.g., A simple crosswalk traffic control light
o  Others

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

9	

Capturing state machines in
sequential programming language

o  Despite benefits of state machine model, most popular
development tools use sequential programming language
n  C, C++, Java, Ada, VHDL, Verilog, etc.
n  Development tools are complex and expensive, therefore not easy to

adapt or replace
o  Must protect investment

o  Two approaches to capturing state machine model with sequential
programming language
n  Front-end tool approach

o  Additional tool installed to support state machine language
n  Graphical and/or textual state machine languages
n  May support graphical simulation
n  Automatically generate code in sequential programming language that is input to

main development tool
o  Drawback: must support additional tool (licensing costs, upgrades, training,

etc.)

n  Language subset approach
o  Most common approach...

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Language subset approach

o  Follow rules (template) for
capturing state machine
constructs in equivalent
sequential language constructs

o  Used with software (e.g.,C) and
hardware languages (e.g.,VHDL)

o  Capturing UnitControl state
machine in C
n  Enumerate all states (#define)
n  Declare state variable initialized

to initial state (IDLE)
n  Single switch statement

branches to current state’s case
n  Each case has actions

o  up, down, open, timer_start
n  Each case checks transition

conditions to determine next
state
o  if(…) {state = …;}

#define IDLE0
#define GOINGUP1
#define GOINGDN2
#define DOOROPEN3
void UnitControl() {
 int state = IDLE;
 while (1) {
 switch (state) {
 IDLE: up=0; down=0; open=1; timer_start=0;
 if (req==floor) {state = IDLE;}
 if (req > floor) {state = GOINGUP;}
 if (req < floor) {state = GOINGDN;}
 break;
 GOINGUP: up=1; down=0; open=0; timer_start=0;
 if (req > floor) {state = GOINGUP;}
 if (!(req>floor)) {state = DOOROPEN;}
 break;
 GOINGDN: up=1; down=0; open=0; timer_start=0;
 if (req < floor) {state = GOINGDN;}
 if (!(req<floor)) {state = DOOROPEN;}
 break;
 DOOROPEN: up=0; down=0; open=1; timer_start=1;
 if (timer < 10) {state = DOOROPEN;}
 if (!(timer<10)){state = IDLE;}
 break;
 }
 }
}

UnitControl state machine in sequential programming
language

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

10	

General template

#define S0 0
#define S1 1
...
#define SN N
void StateMachine() {
 int state = S0; // or whatever is the initial state.
 while (1) {
 switch (state) {
 S0:
 // Insert S0’s actions here & Insert transitions Ti leaving S0:
 if(T0’s condition is true) {state = T0’s next state; /*actions*/ }
 if(T1’s condition is true) {state = T1’s next state; /*actions*/ }
 ...
 if(Tm’s condition is true) {state = Tm’s next state; /*actions*/ }
 break;
 S1:
 // Insert S1’s actions here
 // Insert transitions Ti leaving S1
 break;
 ...
 SN:
 // Insert SN’s actions here
 // Insert transitions Ti leaving SN
 break;
 }
 }
}

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Problems with Conventional FSM

o  Sometimes over-specify implementation
n  Sequencing is fully specified

o  Scalability due to lack of metaphor for
decomposition
n  Number of states can be unmanageable

o  No concurrency support
o  No support for orthogonal connections

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

11	

HCFSM and the Statecharts language

o  Hierarchical/concurrent state machine
model (HCFSM)
n  Extension to state machine model to

support hierarchy and concurrency
n  States can be decomposed into

another state machine
o  With hierarchy has identical functionality

as Without hierarchy, but has one less
transition (z)

o  Known as OR-decomposition
n  States can execute concurrently

o  Known as AND-decomposition

o  Statecharts
n  Graphical language to capture HCFSM
n  timeout: transition with time limit as

condition
n  history: remember last substate OR-

decomposed state A was in before
transitioning to another state B
o  Return to saved substate of A when

returning from B instead of initial state

A1 z
B

A2 z

x
y w

Without
hierarchy

A1 z
B

A2

x y

A

w

With hierarchy

C1

C2

x y

C
B

D1

D2

u v

D

Concurrency

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

UnitControl with FireMode

o  FireMode
n  When fire is true, move

elevator to 1st floor and
open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire
fire

fire
fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire

FireDrOpen
floor==1

fire

u,d,o = 0,0,1

UnitControl

fire

!fire FireGoingDn

floor>1

u,d,o = 0,1,0

FireDrOpen
floor==1

fire

FireMode

u,d,o = 0,0,1

With hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req>floor)

u,d,o = 0,0,1

NormalMode

UnitControl

NormalMode

FireMode

fire !fire

UnitControl

ElevatorController

RequestResolver

...

With concurrent
RequestResolver

–  w/o hierarchy: Getting messy!
–  w/ hierarchy: Simple!

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

12	

Program-state machine model (PSM): HCFSM
plus sequential program model

o  Program-state’s actions can be FSM or
sequential program
n  Designer can choose most appropriate

o  Stricter hierarchy than HCFSM used in
Statecharts
n  transition between sibling states only,

single entry
n  Program-state may “complete”

o  Reaches end of sequential program
code, OR

o  FSM transition to special complete
substate

o  PSM has 2 types of transitions
n  Transition-immediately (TI): taken

regardless of source program-state
n  Transition-on-completion (TOC): taken

only if condition is true AND source
program-state is complete

n  SpecCharts: extension of VHDL to
capture PSM model

n  SpecC: extension of C to capture PSM
model

up = down = 0; open = 1;
 while (1) {
 while (req == floor);
 open = 0;
 if (req > floor) { up = 1;}
 else {down = 1;}
 while (req != floor);
 open = 1;
 delay(10);
 }
 }

NormalMode

FireMode
up = 0; down = 1; open = 0;
while (floor > 1);
up = 0; down = 0; open = 1;

fire !fire

UnitControl

ElevatorController

RequestResolver

...
req = ...
...

int req;

•  NormalMode and FireMode described as
sequential programs

•  Black square originating within FireMode
indicates !fire is a TOC transition

–  Transition from FireMode to NormalMode
only after FireMode completed

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Harel’s StateCharts: Extension of
Conventional FSMs

o  Conventional FSMs are inappropriate for the behavioral
description of complex control
n  Flat and unstructured
n  Inherently sequential in nature
n  Give rise to an exponential blow-up in # of states

o  Small system extensions cause unacceptable growth in the
number of states to be considered

o  StateCharts support:
n  Repeated decomposition of states into AND/OR sub-states

o  Nested states, concurrency, orthogonal components
n  Actions (may have parameters)
n  Activities (functions executed as long as state is active)
n  Guards
n  History
n  A synchronous (instantaneous broadcast) comm. mechanism

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

13	

Hierarchical FSM models

o Problem: how to reduce the size of the representation?
o Harel’s classical papers on StateCharts (language) and

bounded concurrency (model): 3 orthogonal exponential
reductions

o Hierarchy:
n State a “encloses” an FSM
n Being in a means FSM in a is active
n States of a are called OR states
n Used to model pre-emption and exceptions

o Concurrency:
n Two or more FSMs are simultaneously active
n States are called AND states

o Non-determinism:
n Used to abstract behavior

error

a

recovery

odd

even

done

a1 a2

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Introducing hierarchy

FSM will be in exactly one of
the substates of S if S is
active (either in A or in B or ..)

o Classical automata not
useful for complex systems
(complex graphs cannot be
understood by humans).

o F Introduction of hierarchy
FStateCharts [Harel, 1987]

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

14	

Features of StateCharts

o  Nested states and hierarchy
n  Improves scalability and understandability
n  helps describing preemption

o  Concurrency - two or more states can be viewed
as simultaneously active

o  Nondeterminism - there are properties which are
irrelevant

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Definitions

o  Current states of FSMs are also called active states.
o  States which are not composed of other states are called

basic states.
o  States containing other states are called super-states.
o  For each basic state s, the super-states containing s are

called ancestor states.
o  Super-states S are called OR-super-states, if exactly one of

the sub-states of S is active whenever S is active.

ancestor state of E
superstate

substates

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

15	

Default state mechanism

o Try to hide internal
structure from outside
world!
o F Default state
o Filled circle
indicates sub-state
entered whenever
super-state is entered.
o Not a state by itself!

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

History mechanism

o For input m, S enters the state it was in before S was left
(can be A, B, C, D, or E). If S is entered for the very first time,
the default mechanism applies.
o History and default mechanisms can be used hierarchically.

(behavior different
from last slide)

k m

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

16	

Combining history and default state
mechanism

same meaning

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Concurrency

o Convenient ways of describing concurrency are required.
o AND-super-states: FSM is in all (immediate) sub-states
of a super-state; Example:

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

17	

Entering and leaving AND-super-states

o Line-monitoring and key-monitoring are entered and left,
when service switch is operated.

incl.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Benefits of AND-decomposition

V,W

V,Z

X,Z

X,W

V,Y

X,Y

Q R

k h

g

e e f

p
e p

e

g

k

p

n
m,p

m,p

h

e
V

X

Z

Y

W

U

S T

Q R

e

k

h

e m

p

g

n e

f
[in(Y)]

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

18	

AND/OR State Comparison

o  AND-states have orthogonal state components
n  AND-decomposition can be carried out on any level of states

o  more convenient than allowing only one level of communicating FSMs

o  OR-states have sub-states that are related to each other by
exclusive-or (e.g. U, V)

S

T

V

e

f

f

h

g[c]

S

T

V

e

f

h

g[c]

U

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Timers

o  Since time needs to be modeled in embedded systems,
o  timers need to be modeled.
o  In StateCharts, special edges can be used for timeouts.

If event a does not happen while the system is in the left state for 20
ms, a timeout will take place.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

19	

Using timers in answering machine

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

General form of edge labels

o  The general syntax of an expression labeling a transition in
a StateChart is n[c]/a, where
n  n is the event that triggers the transition
n  c is the condition that guards the transition

(cannot be taken unless c is true when e occurs)
n  a is the action that is carried out if and when the transition is

taken
o  Alternative: name(params)[guards]^event_list/action_list

n  Event list, aka propagated transitions, is a list of transitions
that occur in other concurrent state machines because of this
transitions

o  For each transition label, event condition and action are
optional
n  an event can be the changing of a value
n  standard comparisons are allowed as conditions and

assignment statements as actions

event [condition] / action

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

20	

Transitions

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Conditional Transitions

Source: B. P. Douglass & iLogix

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

21	

StateCharts Actions and Events

o  An action A on the edge leaving a state may also
appear as an event triggering a transition going
into an orthogonal state
n  Executing the first transition will immediately

cause the second transition to be taken
simultaneously

o  Actions and events may be associated to the
execution of orthogonal components:
n  action start(A) causes activity A to start
n  event stopped(B) occurs when activity B stops
n  entered(S), exited(S), in(S) etc.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Communication in Concurrent FSMs

o  Broadcast events
n  Events are received by more than one concurrent FSM
n  Results in transitions of the same name in different FSM

o  Propagated transitions
n  Transitions which are generated as a result of

transitions in other FSMs

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

22	

Propagations and Broadcasts

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Order of Nested Actions

o  Executed from outermost – in on entry
o  Executed from innermost – out on exit

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

23	

The StateCharts simulation phases
(StateMate Semantics)

o  How are edge labels evaluated?

o  Three phases:
1.  Effect of external changes on events and conditions

is evaluated,

2.  The set of transitions to be made in the current step
and right hand sides of assignments are computed,

3.  Transitions become effective, variables obtain new
values.

o  Separation into phases 2 and 3 guarantees
deterministic and reproducible behavior.

Example

o  In phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned to a and b. As a
result, variables a and b are swapped.

o  In a single phase environment, executing the left state first
would assign the old value of b (=0) to a and b. Executing the
right state first would assign the old value of a (=1) to a and
b. The execution would be nondeterministic.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

24	

Reflects model of clocked hardware

o In an actual clocked (synchronous) hardware
system, both registers would be swapped as well.

Same separation into phases found in other languages as
well, especially those that are intended to model hardware.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Steps

o Execution of a StateChart model consists of a
sequence of (status, step) pairs

Status= values of all variables + set of events + current time
Step = execution of the three phases (StateMate semantics)

Status phase 2

phase 3

phase 1

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

25	

Evaluation of StateCharts

o  Pros:
n  Hierarchy allows arbitrary nesting of AND- and OR-super

states.
n  (StateMate-) Semantics defined in a follow-up paper to

original paper.
n  Large number of commercial simulation tools available

(StateMate, StateFlow, BetterState, ...)
n  Available „back-ends“ translate StateCharts into C or

VHDL, thus enabling software or hardware
implementations.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Evaluation of StateCharts

o  Cons:
n  Generated C programs frequently inefficient,
n  Not useful for distributed applications,
n  No program constructs,
n  No description of non-functional behavior,
n  No object-orientation,
n  No description of structural hierarchy.

Extensions:
•  Module charts for description of structural hierarchy.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

26	

Example of the Power of StateChart
Formalism

o  Conflicting function & control behaviors
n  Function: primary service of the entity
n  Control: actions performed within the system context

o  Solutions: single automaton, two peer concurrent states

ReadyToSendA

ReadyToSendB

SendingA SendingB

ackA/

ackB/

send/^B

send/^A
Uninitialized

Initialized

Operational

Error

reset/

stop/ start/

data/

reset/

error/

data/

The Combined State Machine in
StateChart Formalism

Uninitialized

Initialized

Operational

Error

reset/

stop/ start/

data/

reset/

error/

data/

ReadyToSendA

ReadyToSendB

SendingA SendingB

ackA/

ackB/

send/^B

send/^A

12/03/14	

27	

Concurrent Statecharts

o  Many embedded systems consist of multiple threads, each
running an FSM

o  State charts allow the modeling of these parallel threads

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Concurrent Statecharts

o  States S and T are active at the same time as
long as X is active
n  Either S.A or S.B must be active when S is active
n  Either T.C, T.D or T.E must be active when T is active

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

28	

Concurrent Statecharts

o  When X exits, both S and T exit
n  If S exits first, the FSM containing X must wait until T exits
n  If the two FSMs are always independent, then they must

be enclosed at the highest scope

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Example Concurrent FSM

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

29	

Explicit Synchronization

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Example: Coke Machine Version 1.0

o  Suppose you have a soda machine:
n  When turned on, the machine waits for money
n  When a quarter is deposited, the machine waits for

another quarter
n  When a second quarter is deposited, the machine waits

for a selection
n  When the user presses “COKE,” a coke is dispensed
n  When the user takes the bottle, the machine waits again
n  When the user presses either “SPRITE” or “DIET COKE,”

a Sprite or a diet Coke is dispensed
n  When the user takes the bottle, the machine waits again

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

30	

Coke Machine 1.0

idle 50c 25c

dispense
coke

dispense
sprite

dispense
diet coke

q q

take
bottle

take
bottle

take
bottle

cb

cs

cd

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Coke Machine, Version 2.0

o  Bottles can get stuck in the machine
n  An automatic indicator will notify the system when a

bottle is stuck
n  When this occurs, the machine will not accept any

money or issue any bottles until the bottle is cleared
n  When the bottle is cleared, the machine will wait for

money again

o  State machine changes
n  How many new states are required?
n  How many new transitions?

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

31	

Coke machine 2.0

idle 50c 25c

dispense
coke

dispense
sprite

dispense
diet coke

q q

take
bottle

take
bottle

take
bottle

cb

cs

cd

stuck
coke

clear bottle

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Coke machine 2.0

idle 50c 25c

dispense
coke

dispense
sprite

dispense
diet coke

q q

take
bottle

take
bottle

take
bottle

cb

cs

cd

stuck
bottle

clear bottle

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

32	

Coke Machine, Version 2.1

o  Bottles sometimes shake loose
n  An additional, automatic indicator will indicate that the

bottle is cleared
n  When the bottles are cleared, the machine will return to

the same state it was in before the bottle got stuck

o  State machine changes
n  How many new states are required?
n  How many new transitions?

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Coke Machine, Version 3.0

o  Automatic bottle filler
n  If a button is pressed, the machine will toggle between

bottle filling and dispensing modes
n  When in bottle filling mode:

o  Bottles may be inserted if the Coke machine is ready
o  When a bottle is inserted, the machine will NOT be ready

to accept another bottle and will check the bottle
o  If the bottle check finds a Coke was inserted, it will signal

Coke_OK and return to ready
o  If the bottle check finds a Diet Coke was inserted, the coke

machine will signal Diet_OK and return to ready
o  Otherwise, the bottle will be immediately dispensed

o  State machine changes
n  How many new states are required?
n  How many new transitions?

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

33	

Bottle Dispenser

dispensing collecting

button

take bottle

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Bottle dispenser

dispensing collecting

take bottle

idle

50c

25c

q

q

dispense
coke

dispense
sprite

dispense
diet coke

cb

cd

cs

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

34	

Bottle Dispenser

dispensing collecting

take bottle

idle

50c

25c

q

q

dispense
coke

dispense
sprite

dispense
diet coke

cb

cd

cs

stuck
bottle

stick

stick clear
bottle

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Adding History

dispensing collecting

take bottle

idle

50c

25c

q

q

dispense
coke

dispense
sprite

dispense
diet coke

cb

cd

cs

stuck
bottle

stick

stick clear
bottle

H H

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

35	

Adding Conditionals

dispensing collecting

take bottle

idle

50c

25c

q

q

dispense
coke

dispense
sprite

dispense
diet coke

(c)

choose (d)

stuck
bottle

stick

stick clear
bottle

C

(s)

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

StateChart Example – TV Controller

o  8 channels
o  Buttons:

n  Standby
n  Channel: +/–
n  Volume: Δ+, Δ–
n  Contrast/Color/
n  Brightness: ρ
n  Pict. Adjust: ≡+, ≡–

o  Missing details for:
n  volume /
n  brightness / color /
n  contrast selection

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

36	

Example – TV
Remote

o  Independent states
n  Timer
n  Channel – split into

two states
n  Sound
n  Clock

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

Conclusions

o  Finite State machines
n  Simple
n  Many formal properties
n  Problem – too many states => Hierarchy

o  StateChart
n  StateMate – Design environment for reactive systems
n  Behavioral modeling language for StateMate
n  Extends FSMs to better handle concurrency
n  Adds conditional statements, memory to FSM

o  Further Reading:
n  D. Harel, Statecharts: A Visual Formalism for Complex

Systems, Science of Computer Programming, vol. 8
(1987) 231 - 274.

n  D. Harel et al., STATEMATE: A working environment for
the development of complex reactive systems, IEEE
Transactions on Software Eng.,vol. 16 (1990), no. 4,
403 - 414.

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara

12/03/14	

37	

Role of appropriate model and language

o  Finding appropriate model to capture embedded system is an
important step
n  Model shapes the way we think of the system

o  Originally thought of sequence of actions, wrote sequential program
n  First wait for requested floor to differ from target floor
n  Then, we close the door
n  Then, we move up or down to the desired floor
n  Then, we open the door
n  Then, we repeat this sequence

o  To create state machine, we thought in terms of states and transitions
among states
n  When system must react to changing inputs, state machine might be best model

§  HCFSM described FireMode easily, clearly

o  Language should capture model easily
n  Ideally should have features that directly capture constructs of model
n  FireMode would be very complex in sequential program

o  Checks inserted throughout code
n  Other factors may force choice of different model

o  Structured techniques can be used instead
n  E.g., Template for state machine capture in sequential program

language

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Concurrent processes and real-time
systems

12/03/14	

38	

Concurrent processes or tasks

o  Consider two examples
having separate tasks
running independently
but sharing data

o  Difficult to write system
using sequential
program model

o  Concurrent process
model easier
n  Separate sequential

programs (processes)
for each task

n  Programs communicate
with each other

Heartbeat Monitoring
System

B[1..4]

Heart-beat
pulse

Task 1:
Read pulse
If pulse < Lo then
 Activate Siren
If pulse > Hi then
 Activate Siren
Sleep 1 second
Repeat

Task 2:
If B1/B2 pressed
then
 Lo = Lo +/– 1
If B3/B4 pressed
then
 Hi = Hi +/– 1
Sleep 500 ms
Repeat

Set-top Box

Input
Signa
l

Task 1:
Read Signal
Separate Audio/
Video
Send Audio to
Task 2
Send Video to
Task 3
Repeat

Task 2:
Wait on Task 1
Decode/output Audio
Repeat

Task 3:
Wait on Task 1
Decode/output Video
Repeat

Video

Audio

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Process (or Tasks)

o  A sequential program, typically an infinite loop
n  Executes concurrently with other processes
n  We are about to enter the world of “concurrent programming”

o  Basic operations on tasks
n  Create and terminate

o  Create is like a procedure call but caller doesn’t wait
n  Created process can itself create new processes

o  Terminate kills a process, destroying all data
n  Suspend and resume

o  Suspend puts a process on hold, saving state for later execution
o  Resume starts the process again where it left off

n  Join
o  A process suspends until a particular child process finishes

execution

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

39	

Communication among processes

o  Processes need to communicate
data and signals to solve their
computation problem
n  Processes that don’t communicate

are just independent programs
solving separate problems

o  Basic example: producer/consumer
n  Process A produces data items,

Process B consumes them
n  E.g., A decodes video packets, B

display decoded packets on a screen
o  How do we achieve this

communication?
n  Two basic methods

o  Shared memory
o  Message passing

 processA() {
 // Decode packet
 // Communicate packet
to B
 }
}

void processB() {
 // Get packet from A
 // Display packet
}

Encoded video
packets

Decoded video
packets

To display

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Shared Memory

o  Processes read and write shared
variables
n  No time overhead, easy to implement
n  But, hard to use – mistakes are

common
o  Example: Producer/consumer with a mistake

n  Share buffer[N], count
o  count = # of valid data items in buffer

n  processA produces data items and stores in buffer
o  If buffer is full, must wait

n  processB consumes data items from buffer
o  If buffer is empty, must wait

n  Error when both processes try to update count
concurrently (lines 10 and 19) and the following
execution sequence occurs. Say “count” is 3.
o  A loads count (count = 3) from memory into register R1 (R1 =

3)
o  A increments R1 (R1 = 4)
o  B loads count (count = 3) from memory into register R2 (R2 =

3)
o  B decrements R2 (R2 = 2)
o  A stores R1 back to count in memory (count = 4)
o  B stores R2 back to count in memory (count = 2)

n  count now has incorrect value of 2

01: data_type buffer[N];
02: int count = 0;
03: void processA() {
04: int i;
05: while(1) {
06: produce(&data);
07: while(count == N);/*loop*/
08: buffer[i] = data;
09: i = (i + 1) % N;
10: count = count + 1;
11: }
12: }
13: void processB() {
14: int i;
15: while(1) {
16: while(count == 0);/*loop*/
17: data = buffer[i];
18: i = (i + 1) % N;
19: count = count - 1;
20: consume(&data);
21: }
22: }
23: void main() {
24: create_process(processA);
25: create_process(processB);
26: }

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

40	

Message Passing

o  Message passing
n  Data explicitly sent from one process

to another
o  Sending process performs special

operation, send
o  Receiving process must perform

special operation, receive, to receive
the data

o  Both operations must explicitly
specify which process it is sending to
or receiving from

o  Receive is blocking, send may or may
not be blocking

n  Safer model, but less flexible

void processA() {
 while(1) {
 produce(&data)
 send(B, &data);
 /* region 1 */
 receive(B, &data);
 consume(&data);
 }
}
void processB() {
 while(1) {
 receive(A, &data);
 transform(&data)
 send(A, &data);
 /* region 2 */
 }
}

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Back to Shared Memory: Mutual Exclusion

o  Certain sections of code should not be performed concurrently
n  Critical section

o  Possibly noncontiguous section of code where simultaneous updates, by
multiple processes to a shared memory location, can occur

o  When a process enters the critical section, all other processes
must be locked out until it leaves the critical section
n  Mutex

o  A shared object used for locking and unlocking segment of shared data
o  Disallows read/write access to memory it guards
o  Multiple processes can perform lock operation simultaneously, but only one

process will acquire lock
o  All other processes trying to obtain lock will be put in blocked state until

unlock operation performed by acquiring process when it exits critical
section

o  These processes will then be placed in runnable state and will compete for
lock again

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

41	

Correct Shared Memory Solution to the
Consumer-Producer Problem

o  The primitive mutex is used to ensure critical
sections are executed in mutual exclusion of
each other

o  Following the same execution sequence as
before:
n  A/B execute lock operation on count_mutex
n  Either A or B will acquire lock

o  Say B acquires it
o  A will be put in blocked state

n  B loads count (count = 3) from memory into
register R2 (R2 = 3)

n  B decrements R2 (R2 = 2)
n  B stores R2 back to count in memory (count =

2)
n  B executes unlock operation

o  A is placed in runnable state again
n  A loads count (count = 2) from memory into

register R1 (R1 = 2)
n  A increments R1 (R1 = 3)
n  A stores R1 back to count in memory (count =

3)
o  Count now has correct value of 3

01: data_type buffer[N];
02: int count = 0;
03: mutex count_mutex;
04: void processA() {
05: int i;
06: while(1) {
07: produce(&data);
08: while(count == N);/*loop*/
09: buffer[i] = data;
10: i = (i + 1) % N;
11: count_mutex.lock();
12: count = count + 1;
13: count_mutex.unlock();
14: }
15: }
16: void processB() {
17: int i;
18: while(1) {
19: while(count == 0);/*loop*/
20: data = buffer[i];
21: i = (i + 1) % N;
22: count_mutex.lock();
23: count = count - 1;
24: count_mutex.unlock();
25: consume(&data);
26: }
27: }
28: void main() {
29: create_process(processA);
30: create_process(processB);
31: }

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Process Communication

o  Try modeling “req” value of our
elevator controller
n  Using shared memory
n  Using shared memory and

mutexes
n  Using message passing

buttons
inside
elevator

Unit
Control

b1

down

open

floor

..

.

Request
Resolver

..

.

up/
down
buttons
on each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System
interface

up3
dn3

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

42	

A Common Problem in Concurrent
Programming: Deadlock

o  Deadlock: A condition where 2 or more
processes are blocked waiting for the other to
unlock critical sections of code
n  Both processes are then in blocked state
n  Cannot execute unlock operation so will wait

forever
o  Example code has 2 different critical sections of

code that can be accessed simultaneously
n  2 locks needed (mutex1, mutex2)
n  Following execution sequence produces deadlock

o  A executes lock operation on mutex1 (and acquires it)
o  B executes lock operation on mutex2(and acquires it)
o  A/B both execute in critical sections 1 and 2,

respectively
o  A executes lock operation on mutex2

n  A blocked until B unlocks mutex2
o  B executes lock operation on mutex1

n  B blocked until A unlocks mutex1
o  DEADLOCK!

o  One deadlock elimination protocol requires
locking of numbered mutexes in increasing
order and two-phase locking (2PL)
n  Acquire locks in 1st phase only, release locks in 2nd

phase

01: mutex mutex1, mutex2;
02: void processA() {
03: while(1) {
04: …
05: mutex1.lock();
06: /* critical section 1 */
07: mutex2.lock();
08: /* critical section 2 */
09: mutex2.unlock();
10: /* critical section 1 */
11: mutex1.unlock();
12: }
13: }
14: void processB() {
15: while(1) {
16: …
17: mutex2.lock();
18: /* critical section 2 */
19: mutex1.lock();
20: /* critical section 1 */
21: mutex1.unlock();
22: /* critical section 2 */
23: mutex2.unlock();
24: }
25: }

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Synchronization among processes

o  Sometimes concurrently running processes must
synchronize their execution
n  When a process must wait for:

o  another process to compute some value
o  reach a known point in their execution
o  signal some condition

o  Recall producer-consumer problem
n  processA must wait if buffer is full
n  processB must wait if buffer is empty
n  This is called busy-waiting

o  Process executing loops instead of being blocked
o  CPU time wasted

o  More efficient methods
n  Join operation, and blocking send and receive discussed earlier

o  Both block the process so it doesn’t waste CPU time
n  Condition variables and monitors

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

43	

Condition variables

o  Condition variable is an object that has 2 operations, signal and
wait

o  When process performs a wait on a condition variable, the process
is blocked until another process performs a signal on the same
condition variable

o  How is this done?
n  Process A acquires lock on a mutex
n  Process A performs wait, passing this mutex

o  Causes mutex to be unlocked
n  Process B can now acquire lock on same mutex
n  Process B enters critical section

o  Computes some value and/or make condition true
n  Process B performs signal when condition true

o  Causes process A to implicitly reacquire mutex lock
o  Process A becomes runnable

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Condition variable example:
consumer-producer

o  2 condition variables
n  buffer_empty

o  Signals at least 1 free location available
in buffer

n  buffer_full
o  Signals at least 1 valid data item in

buffer
o  processA:

n  produces data item
n  acquires lock (cs_mutex) for critical section
n  checks value of count
n  if count = N, buffer is full

o  performs wait operation on
buffer_empty

o  this releases the lock on cs_mutex
allowing processB to enter critical
section, consume data item and free
location in buffer

o  processB then performs signal
n  if count < N, buffer is not full

o  processA inserts data into buffer
o  increments count
o  signals processB making it runnable if it

has performed a wait operation on
buffer_full

01: data_type buffer[N];
02: int count = 0;
03: mutex cs_mutex;
04: condition buffer_empty, buffer_full;
06: void processA() {
07: int i;
08: while(1) {
09: produce(&data);
10: cs_mutex.lock();
11: if(count == N) buffer_empty.wait(cs_mutex);
13: buffer[i] = data;
14: i = (i + 1) % N;
15: count = count + 1;
16: cs_mutex.unlock();
17: buffer_full.signal();
18: }
19: }
20: void processB() {
21: int i;
22: while(1) {
23: cs_mutex.lock();
24: if(count == 0) buffer_full.wait(cs_mutex);
26: data = buffer[i];
27: i = (i + 1) % N;
28: count = count - 1;
29: cs_mutex.unlock();
30: buffer_empty.signal();
31: consume(&data);
32: }
33: }
34: void main() {
35: create_process(processA); create_process(processB);
37: }

Consumer-producer using condition variables

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

44	

Concurrent process model:
implementation

o  Can use single and/or general-purpose
processors

o  (a) Multiple processors, each executing
one process
n  True multitasking (parallel processing)
n  General-purpose processors

o  Use programming language like C and
compile to instructions of processor

o  Expensive and in most cases not necessary
n  Custom single-purpose processors

o  More common

o  (b) One general-purpose processor
running all processes
n  Most processes don’t use 100% of

processor time
n  Can share processor time and still achieve

necessary execution rates
o  (c) Combination of (a) and (b)

n  Multiple processes run on one general-
purpose processor while one or more
processes run on own single_purpose
processor

Process
1

Process
2

Process
3

Process4

Processor A

Processor B

Processor C

Processor D C
om

m
un

ic
at

io
n

B
us

(a)

(b)

Process
1

Process
2

Process
3

Process4

General Purpose
Processor

Process
1

Process
2

Process
3

Process4

Processor A

General
Purpose
Processor

C
om

m
un

ic
at

io
n

B
us

(c)

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Implementation:
multiple processes sharing single processor

o  Can manually rewrite processes as a single sequential program
n  Ok for simple examples, but extremely difficult for complex examples
n  Automated techniques have evolved but not common
n  E.g., simple Hello World concurrent program from before would look like:

I = 1; T = 0;
while (1) {

 Delay(I); T = T + 1;
 if X modulo T is 0 then call PrintHelloWorld
 if Y modulo T is 0 then call PrintHowAreYou

}
o  Can use multitasking operating system

n  Much more common
n  Operating system schedules processes, allocates storage, and interfaces to

peripherals, etc.
n  Real-time operating system (RTOS) can guarantee execution rate constraints

are met
n  Describe concurrent processes with languages having built-in processes (Java,

Ada, etc.) or a sequential programming language with library support for
concurrent processes (C, C++, etc. using POSIX threads for example)

o  Can convert processes to sequential program with process scheduling right
in code
n  Less overhead (no operating system)
n  More complex/harder to maintain

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

45	

Processes vs. threads

o  Different meanings when operating system terminology
o  Regular processes

n  Heavyweight process
n  Own virtual address space (stack, data, code)
n  System resources (e.g., open files)

o  Threads
n  Lightweight process
n  Subprocess within process
n  Only program counter, stack, and registers
n  Shares address space, system resources with other threads

o  Allows quicker communication between threads
n  Small compared to heavyweight processes

o  Can be created quickly
o  Low cost switching between threads

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Implementation:
suspending, resuming, and joining

o  Multiple processes mapped to single-purpose processors
n  Built into processor’s implementation
n  Could be extra input signal that is asserted when process

suspended
n  Additional logic needed for determining process completion

o  Extra output signals indicating process done

o  Multiple processes mapped to single general-purpose
processor
n  Built into programming language or special multitasking library

like POSIX
n  Language or library may rely on operating system to handle

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

46	

Implementation: process scheduling

o  Must meet timing requirements when multiple concurrent
processes implemented on single general-purpose
processor
n  Not true multitasking

o  Scheduler
n  Special process that decides when and for how long each

process is executed
n  Implemented as preemptive or nonpreemptive scheduler
n  Preemptive

o  Determines how long a process executes before preempting to
allow another process to execute
n  Time quantum: predetermined amount of execution time preemptive

scheduler allows each process (may be 10 to 100s of milliseconds long)

o  Determines which process will be next to run
n  Nonpreemptive

o  Only determines which process is next after current process
finishes execution

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Scheduling: priority

o  Process with highest priority always selected first by scheduler
n  Typically determined statically during creation and dynamically during

execution
o  FIFO

n  Runnable processes added to end of FIFO as created or become
runnable

n  Front process removed from FIFO when time quantum of current
process is up or process is blocked

o  Priority queue
n  Runnable processes again added as created or become runnable
n  Process with highest priority chosen when new process needed
n  If multiple processes with same highest priority value then selects

from them using first-come first-served
n  Called priority scheduling when nonpreemptive
n  Called round-robin when preemptive

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

47	

Priority assignment

o  Period of process
n  Repeating time interval the process must complete one

execution within
o  E.g., period = 100 ms
o  Process must execute once every 100 ms

n  Usually determined by the description of the system
o  E.g., refresh rate of display is 27 times/sec
o  Period = 37 ms

o  Execution deadline
n  Amount of time process must be completed by after it has

started
o  E.g., execution time = 5 ms, deadline = 20 ms, period = 100 ms
o  Process must complete execution within 20 ms after it has begun

regardless of its period
o  Process begins at start of period, runs for 4 ms then is preempted
o  Process suspended for 14 ms, then runs for the remaining 1 ms
o  Completed within 4 + 14 + 1 = 19 ms which meets deadline of

20 ms
o  Without deadline process could be suspended for much longer

o  Rate monotonic scheduling
n  Processes with shorter periods have higher priority
n  Typically used when execution deadline = period

o  Deadline monotonic scheduling
n  Processes with shorter deadlines have higher priority
n  Typically used when execution deadline < period

Proces
s

A
B
C
D
E
F

Period

25 ms
50 ms
12 ms
100
ms
40 ms
75 ms

Priority

5
3
6
1
4
2

Process

G
H
I
J
K
L

Deadline

17 ms
50 ms
32 ms
10 ms
140 ms
32 ms

Priority

5
2
3
6
1
4

Rate monotonic

Deadline
monotonic

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Real-time systems

o  Systems composed of 2 or more cooperating, concurrent
processes with stringent execution time constraints
n  E.g., set-top boxes have separate processes that read or

decode video and/or sound concurrently and must decode 20
frames/sec for output to appear continuous

n  Other examples with stringent time constraints are:
o  digital cell phones
o  navigation and process control systems
o  assembly line monitoring systems
o  multimedia and networking systems
o  etc.

n  Communication and synchronization between processes for
these systems is critical

n  Therefore, concurrent process model best suited for describing
these systems

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

48	

Real-time operating systems (RTOS)

o  Provide mechanisms, primitives, and guidelines for building real-time
embedded systems

o  Windows CE
n  Built specifically for embedded systems and appliance market
n  Scalable real-time 32-bit platform
n  Supports Windows API
n  Perfect for systems designed to interface with Internet
n  Preemptive priority scheduling with 256 priority levels per process
n  Kernel is 400 Kbytes

o  QNX
n  Real-time microkernel surrounded by optional processes (resource managers)

that provide POSIX and UNIX compatibility
o  Microkernels typically support only the most basic services
o  Optional resource managers allow scalability from small ROM-based systems to huge

multiprocessor systems connected by various networking and communication
technologies

n  Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-
driven scheduling

n  32 priority levels per process
n  Microkernel < 10 Kbytes and complies with POSIX real-time standard

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

Summary

o  Computation models are distinct from languages
o  Sequential program model is popular

n  Most common languages like C support it directly
o  State machine models good for control

n  Extensions like HCFSM provide additional power
n  PSM combines state machines and sequential programs

o  Concurrent process model for multi-task systems
n  Communication and synchronization methods exist
n  Scheduling is critical

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis

12/03/14	

49	

LCD (Liquid Crystal Display)

o  LCD Panel is based on
n  A light valve for each pixel that

turn the light on, off, or an
intermediate level.

o  Grid of such light valve for the
LCD display panel.

o  A back light and display
enhancement films create the
illumination.

Source: Computer Graphics Course. Department of Computer Science , Ben-Gurion University of the Negev, Israel

Figures are curtsy of 3M

About Liquid Crystal

o  Liquid crystal molecules
can move freely while
maintaining their
orientation.

o  It align itself to a polyimide
film to the inside of a panel
glass.

o  When the two glass panels
are not aligned the liquid
crystal twists accordingly.

o  The liquid crystal will also
align to electric field.

Source: Computer Graphics Course. Department of Computer Science , Ben-Gurion University of the Negev, Israel

12/03/14	

50	

TFT stands for thin film transistor. A TFT is actually a component of a an LCD designed to improve the quality and
control of the LCD display. It is basically a tiny transistor linked to each individual pixel on the screen. In today’s
marketplace, TFT technology provides the best resolution of all the flat-panel techniques. TFT screens are sometimes
called active-matrix LCDs.

T = thin

F = film

T = transistor

What Does TFT Stand For?

Source: Lumex (http://www.lumex.com) - LED and LCD technology

A TFT uses liquid crystal to control the passage of light. The basic structure of a TFT-LCD panel may be thought of as
two pieces of glass with a layer of liquid crystal between them. The front glass is fitted with a color filter, while the back
glass has transistors on it. When voltage is applied to a transistor, the liquid crystal is bent, allowing light to pass
through to form a pixel. A light source, in many cases an LED, is located at the back of the panel and is what ,makes
up the backlight. The front glass is fitted with a color filter, which gives each pixel its own color. The combination of
these pixels in different colors forms the image on the panel.

Polarizer
Color filter

Array
Substrate

Bonding Pad

Seal

Black Matrix

LCD Crystals

Polarizer

Pixel Electrode
Layer (ITO)

Spacer

Pixel Electrode
Layer (ITO)

Alignment Layer

Alignment Layer

TFT

Backlight

How TFT Technology Works

Source: Lumex (http://www.lumex.com) - LED and LCD technology

12/03/14	

51	

A TFT panel array contains a specific number of pixels, often known as subpixels. Thousands or millions of these unit
pixels together create an image on the display. This diagram shows the simple structure of a sub-pixel. Each unit pixel
contains a TFT, a pixel electrode or ITO and microscopic storage capacitors. Each unit pixel is connected to one of
the gate bus lines and one of the data bus lines in a matrix format. This allows for easy individual pixel addressing.
TFT devices are switching devices, which function to turn each individual pixel on or off thereby controlling the number
of electrons that flow into the ITO zone. As the number of electrons reaches the expected value, TFT turns off and
these electrons can be kept within the ITO zone.

ITO

Data Signal Line
Data Signal Line

Gate Line

Gate Line

How TFT Technology Works

Source: Lumex (http://www.lumex.com) - LED and LCD technology

When power is applied to bend the liquid crystal, light passes through from the backlight into the color filter. How
much light that passes through depends on the amount of power applied to the pixel. If there were no color filter, the
output would be in the form of a grayscale. The color filter is an RGB (red, green and blue) stripe. One set of three
subpixels makes up one unit pixel. The white light from the backlight passes through the color filter and outputs all
three colors; the intensity of which depends on how far the liquid crystal gets bent. The human eye cannot resolve
each color from a tiny pixel; instead the brain mixes the 3 colors together to give the appearance of the combined
color (such as mixing red and blue to make purple).

Color Filters

Illustration represents one pixel.

How Do TFT’s Generate Color?

Source: Lumex (http://www.lumex.com) - LED and LCD technology

12/03/14	

52	

How Do TFT’s Generate Color?

Source: Lumex (http://www.lumex.com) - LED and LCD technology

Monochromatic displays consist of a passive-matrix structure utilizing super-twisted nematic fluid with no switching
devices. Most of the monochromatic displays offer black and white images except for the color STN types which offers
16 colors only. Slow response time and less contrast are typical of passive-matrix addressed LCDs. TFTs consist of an
active matrix structure utilizing a layer of transistors for addressing each pixel. TFT offers full color capability, high
pixel resolution and good contrast.

One Pixel Three
subpixels

Difference Between Monochromatic and TFT

Source: Lumex (http://www.lumex.com) - LED and LCD technology

12/03/14	

53	

Due to the simplicity in construction of a monochromatic LCD, they are ideal for text and static image on the screen
with no color. TFTs are a bit more complex in construction compared to a monochromatic display, therefore TFT
require more data input in order to display full color dynamic video on the screen.

Transitioning from Monochromatic to TFT

Source: Lumex (http://www.lumex.com) - LED and LCD technology

TFT applications are including touch screen capability in order to make the user interface more friendly. There are two
primary types of touch screens: resistive and capacitive. Simply, resistive touch screens use two thin layers of a
metallic membrane with a gap in between the two. A person touching the screen at a specific point compresses the
outer layer until it touches the other layer. This technology is relatively inexpensive, however it can also be fragile.
Environments, such as medical equipment, require resistive touch screens because they are easy to clean, maintain
and do no register false readings.

Spacers

Resistive touch screen displays
have multiple layers that are
separated by thin spacers.

Resistive type touch screens require
more pressure to activate than
capacitive touch screens. Inner metallic

membrane

Outer metallic
membrane

Capacitive vs. Resistive TFT Technology

Source: Lumex (http://www.lumex.com) - LED and LCD technology

12/03/14	

54	

Capacitive touch screens are similar to resistive touch screens in that they have multiple layers. With capacitive touch
screen technology, the outer layer is an insulator and the inner layer is conductive. When the finger touched the outer
layer, it changes the capacitance and registers a touch. Capacitive touch screens, due to their nature, require the bare
finger and can register false touches, but are more impact resistant. Capacitive touch screens are generally more
expensive than resistive touch screens due to their relative robustness.

Capacitive touch screen displays can
be controlled with very light touches
and are therefore subject to suffer
from ‘false’ touches.

Inner metallic
membrane

Outer metallic
membrane

Capacitive vs. Resistive TFT Technology

Source: Lumex (http://www.lumex.com) - LED and LCD technology

There are several advantages to TFT technology, including space savings, enhanced resolution and finer quality. Of
all the flat panel technologies available, TFT displays offer tremendous space savings. A Lumex InfoVue TFT module,
for instance, starts at an industry-leading 3mm in width. In addition, TFT displays provide a finer imaging quality with
less glare and flicker for a reduction in eye strain to the end user. TFT displays also offer a more vibrant color and
response time than other color LCD technologies.

•  Space savings

•  Finer imaging quality

•  Less glare and flicker

•  More vibrant color

•  Increased response time

Advantages of TFT

Source: Lumex (http://www.lumex.com) - LED and LCD technology

12/03/14	

55	

Controlador TFT SPFD5408B

o  Caracerísticas del controlador de TFT
n  Resolución de 320 x 240 pixels con 18 bits por pixel (256K colores)
n  Diferentes modos de comunicación (18 bits, 16 bits, 8 bits, SPI)

o  En el módulo HY28A - LCDA fijado el modo 16 bits por hardware

o  Registros de control
n  Dispone de más de 50 registros de control

o  Memoria CGRAM (Memoria gráfica)
n  Contiene la información de los 320x240 pixels con 18 bits de información por

pixel
n  Representa la información que es presentada en el display.

Controlador TFT SPFD5408B

12/03/14	

56	

Controlador TFT SPFD5408B

Graphics RAM (GRAM): 172800 bytes (240 x 320 x 18 / 8 bytes)

Controlador TFT SPFD5408B
o  Líneas de control

n  RS indica si se escribe en el puntero de registro o en el registro
apuntado por el puntero.

12/03/14	

57	

Controlador TFT SPFD5408B
o  Líneas de control

n  RS indica si se escribe en el puntero de registro o en el registro
apuntado por el puntero.

Controlador TFT SPFD5408B
o  Configuración del modo de comunicación

16 bits

8 bits

SPI

18 bits
9 bits

12/03/14	

58	

Controlador TFT SPFD5408B
o  Acceso los Registros de Configuración

n  Hay más de 50 registros de configuración de 16 bits
n  Para escribir en un registro primero hay que escribir un puntero que

apunte al registro
n  La escritura en el puntero al registro (Index Register) o en el registro

apuntado por el puntero se controla con el pin RS
o  RS = 0 à El dato se escribe en el Index Register (Puntero)
o  RS = 1 à El dato se escribe en el registro apuntado por el Index Register

Controlador TFT SPFD5408B
o  Ejemplo de registro de control: R03h – Entry Mode

n  Entre otras cosas permite configurar la orientación de la
visualización.

12/03/14	

59	

Controlador TFT SPFD5408B
o  Acceso a la CGRAM

n  Se debe especificar el puntero de acceso a la CGRAM (R20h y R21h)
y luego escribir o leer

n  Con cada lectura o escritura se autoincrementa el puntero
n  Cada fila sólo tiene útiles 240 (0x0000-0x00EF) (0x0100-0x01EF)…

Controlador TFT SPFD5408B
o  Acceso mediante un bus paralelo de 16 bits

n  Modo 64K colores à 16 bits por pixel
o  Cada pixel necesita una palabra de 16 bits
o  Se pierde la resolución del bit menos significativo del R y del B

n  El modo se controla con la información del registro “Entry Mode (R03H)

12/03/14	

60	

Controlador TFT SPFD5408B
o  Acceso mediante un bus paralelo de 16 bits

n  Modo 256K colores à 18 bits por pixel
o  Cada pixel necesita dos transferencias de 16 bits
o  Hay dos modos de distribuir la información en las dos palabras

Conexión Controlador TFT SPFD5408B
o  Temporización de lectura y escritura del bus paralelo

12/03/14	

61	

Controlador TFT SPFD5408B

o  Acceso mediante SPI
n  Transferencia de 24 bits (3 bytes)

o  (6 bits) Identificador de dispositivo
o  Bit RS
o  Bit RW
o  Dato de 16 bits

Controlador TFT SPFD5408B

o  Acceso mediante SPI
n  La lectura de los registros está disponible en el segundo byte
n  La lectura de la RAM está disponible en el séptimo byte

12/03/14	

62	

Controlador TFT SPFD5408B

o  Acceso mediante SPI
n  Formato de los bits de Datos

Controlador TFT SPFD5408B
o  Acceso mediante SPI

n  Escritura y Lectura de un Byte

12/03/14	

63	

Controlador TFT SPFD5408B
o  Acceso mediante SPI

n  Escritura del “Index Register” (RS=0, RW=0)
o  El “Index Register” es de 8 bits

n  Escritura del un datos donde apunta “Index Register” (RS=1, RW=0)
o  El contenido de los registros es de 16 bits

Controlador TFT SPFD5408B
o  Acceso mediante SPI

n  Escritura en un registro

n  Lectura de un registro (RS=1, RW=0)
o  Los registros son de 16 bits

