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Describing embedded system’s 
processing behavior 

Outline 

o  Models vs. Languages 
o  State Machine Model 

n  FSM/FSMD 
n  HCFSM and Statecharts Language 
n  Program-State Machine (PSM) Model 

o  Concurrent Process Model 
n  Communication 
n  Synchronization 
n  Implementation 

o  Real-Time Systems 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Introduction 

o  Describing embedded system’s processing 
behavior 
n  Can be extremely difficult 

o  Complexity increasing with increasing IC capacity 
n  Past: washing machines, small games, etc. 

§  Hundreds of lines of code 
n  Today: TV set-top boxes, Cell phone, etc. 

§  Hundreds of thousands of lines of code 
o  Desired behavior often not fully understood in beginning 

n  Many implementation bugs due to description mistakes/
omissions 

n  English (or other natural language) common starting 
point 
o  Precise description difficult to impossible 
o  Example: Motor Vehicle Code – thousands of pages long... 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

An example of trying to be precise in 
English 

o  California Vehicle Code 
n  Right-of-way of crosswalks 

o  21950. (a) The driver of a vehicle shall yield the right-of-way to a 
pedestrian crossing the roadway within any marked crosswalk or 
within any unmarked crosswalk at an intersection, except as 
otherwise provided in this chapter. 

o  (b) The provisions of this section shall not relieve a pedestrian 
from the duty of using due care for his or her safety. No 
pedestrian shall suddenly leave a curb or other place of safety and 
walk or run into the path of a vehicle which is so close as to 
constitute an immediate hazard. No pedestrian shall unnecessarily 
stop or delay traffic while in a marked or unmarked crosswalk. 

o  (c) The provisions of subdivision (b) shall not relieve a driver of a 
vehicle from the duty of exercising due care for the safety of any 
pedestrian within any marked crosswalk or within any unmarked 
crosswalk at an intersection. 

n  All that just for crossing the street (and there’s much more)! 
 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Models and languages 

o  How can we (precisely) capture behavior? 
n  We may think of languages (C, C++), but computation 

model is the key 
o  Common computation models: 

n  Sequential program model 
o  Statements, rules for composing statements, semantics for 

executing them 
n  Communicating process model 

o  Multiple sequential programs running concurrently 
n  State machine model 

o  For control dominated systems, monitors control inputs, sets 
control outputs 

n  Dataflow model 
o  For data dominated systems, transforms input data streams 

into output streams 
n  Object-oriented model 

o  For breaking complex software into simpler, well-defined 
pieces 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Models vs. languages 

o  Computation models describe system behavior 
n  Conceptual notion, e.g., recipe, sequential program 

o  Languages capture models 
n  Concrete form, e.g., English, C 

o  Variety of languages can capture one model 
n  E.g., sequential program model à C,C++, Java  

o  One language can capture variety of models 
n  E.g., C++ → sequential program model, object-oriented model, state 

machine model 
o  Certain languages better at capturing certain computation models 

Models 

Languages 

Recipe 

Spanish English Japanese 

Poetry Story Sequent. 
program 

C++ C Java 

State 
machine 

Data- 
flow 

Recipes vs. English Sequential programs vs. C 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Text versus Graphics 

o  Models versus languages not to be confused with 
text versus graphics 
n  Text and graphics are just two types of languages 

o  Text: letters, numbers 
o  Graphics: circles, arrows (plus some letters, numbers) 

X = 1; 
Y = X + 1; 

     X = 1 

  Y = X + 1 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Introductory example: An elevator 
controller 

o  Simple elevator controller 
n  Request Resolver resolves various floor requests into 

single requested floor 
n  Unit Control moves elevator to this requested floor 

o  Try capturing in C... 

“Move the elevator either up or down to 
reach the requested floor. Once at the 
requested floor, open the door for at least 
10 seconds, and keep it open until the 
requested floor changes. Ensure the door 
is never open while moving. Don’t change 
directions unless there are no higher 
requests when moving up or no lower 
requests when moving down…” 

Partial English description 

buttons 
inside 
elevator 

 
 
Unit 
Control 

b1 

down 

open 

floor 

..

. 

 
 
 
 
 
Request 
Resolver 

..

. 

up/
down 
buttons 
on each 
floor 

b2 
bN 

up1 
up2 
dn2 

dnN 

req 

up 

System 
interface 

up3 
dn3 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Elevator controller using a sequential 
program model  

“Move the elevator either up 
or down to reach the 
requested floor. Once at the 
requested floor, open the door 
for at least 10 seconds, and 
keep it open until the 
requested floor changes. 
Ensure the door is never open 
while moving. Don’t change 
directions unless there are no 
higher requests when moving 
up or no lower requests when 
moving down…” 

Partial English 
description 

buttons 
inside 
elevator 

Unit 
Control 

b1 

down 

open 

floor 

..

. 

Request 
Resolver 

..

. 

up/
down 
buttons 
on each 
floor 

b2 
bN 

up1 
up2 
dn2 

dnN 

req 

up 

System interface 

up3 
dn3 

Sequential program model 

void UnitControl()  
{ 
   up = down = 0; open = 
1; 
   while (1) { 
      while (req == floor); 
      open = 0; 
      if (req > floor) { up = 
1;} 
      else {down = 1;} 
      while (req != floor); 
      up = down = 0; 
      open = 1; 
      delay(10); 
   } 
} 

void 
RequestResolver()  
{ 
   while (1)  
   ... 
      req = ... 
   ... 
} 
void main()  
{ 
   Call concurrently: 
      UnitControl() 
and 
      
RequestResolver() 
} 

Inputs: int floor; bit b1..bN; up1..upN-1; 
dn2..dnN; 
Outputs: bit up, down, open; 
Global variables: int req; 

You might have come up with 
something having even more if 
statements. 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Finite-state machine (FSM) model 

o  Trying to capture this behavior as sequential 
program is a bit awkward 

o  Instead, we might consider an FSM model, 
describing the system as: 
n  Possible states 

o  E.g., Idle, GoingUp, GoingDn, DoorOpen 
n  Possible transitions from one state to another based on 

input 
o  E.g., req > floor 

n  Actions that occur in each state 
o  E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1, 

down, open, and timer_start = 0) 
o  Try it... 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Finite-state machine (FSM) model 

Idle 

GoingUp 

req > floor 

req < floor 

!(req > floor)  

!(timer < 10) 

req < floor 

DoorOpen 

GoingDn 

req > floor 

u,d,o, t = 1,0,0,0 

u,d,o,t = 0,0,1,0 

u,d,o,t = 0,1,0,0 

u,d,o,t = 0,0,1,1 

u is up, d is down, o is open 

req == floor 

!(req<floor) 

timer < 10 

t is timer_start 

UnitControl process using a state machine 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Formal definition 

o  An FSM is a 6-tuple F<S, I, O, F, H, s0> 
n  S is a set of all states {s0, s1, …, sl} 
n  I is a set of inputs {i0, i1, …, im} 
n  O is a set of outputs {o0, o1, …, on} 
n  F is a next-state function (S x I → S) 
n  H is an output function (S → O) 
n  s0 is an initial state 

o  Moore-type 
n  Associates outputs with states (as given above, H maps S → 

O) 
o  Mealy-type 

n  Associates outputs with transitions (H maps S x I → O) 
o  Shorthand notations to simplify descriptions 

n  Implicitly assign 0 to all unassigned outputs in a state 
n  Implicitly AND every transition condition with clock edge (FSM 

is synchronous) 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  



12/03/14	
  

7	
  

Finite-state machine with datapath model 
(FSMD) 

o  FSMD extends FSM: complex data types and variables for storing data 
n  FSMs use only Boolean data types and operations, no variables 

o  FSMD: 7-tuple <S, I , O, V, F, H, s0> 
n  S is a set of states {s0, s1, …, sl} 
n  I is a set of inputs {i0, i1, …, im} 
n  O is a set of outputs {o0, o1, …, on} 
n  V is a set of variables {v0, v1, …, vn} 
n  F is a next-state function (S x I x V → S) 

n  H is an action function (S → O + V) 

n  s0 is an initial state 

 
o  I,O,V may represent complex data types (i.e., integers, floating point, etc.) 
o  F,H may include arithmetic operations 
o  H is an action function, not just an output function 

n  Describes variable updates as well as outputs 
o  Complete system state now consists of current state, si, and values of all 

variables 

Idle 

GoingUp 

req > floor 

req < floor 

!(req > floor)  

!(timer < 10) 

req < floor 

DoorOpen 

GoingDn 

req > floor 

u,d,o, t = 1,0,0,0 

u,d,o,t = 0,0,1,0 

u,d,o,t = 0,1,0,0 

u,d,o,t = 
0,0,1,1 

u is up, d is down, o is open 

req == 
floor 

!(req<floor) 

timer < 10 

t is timer_start 

We described UnitControl as an FSMD 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Describing a system as a state machine 

2. Declare all variables (none in this example) 

3. For each state, list possible transitions, with conditions, to other states 
4. For each state and/or transition, 

list associated actions 
5. For each state, ensure exclusive 

and complete exiting transition 
conditions 
•  No two exiting conditions can 

be true at same time 
–  Otherwise nondeterministic 

state machine 
•  One condition must be true at 

any given time 
–  Reducing explicit transitions 

should be avoided when first 
learning 

req > floor 

!(req > floor)  u,d,o, t = 1,0,0,0 

u,d,o,t = 0,0,1,0 

u,d,o,t = 0,1,0,0 

u,d,o,t = 
0,0,1,1 

u is up, d is down, o is open 

req < floor 

req > floor 

req == floor 

req < floor 

!(req<floor) 

!(timer < 10) 

timer < 10 

t is timer_start 

Idle 

GoingUp 

DoorOpen 

GoingDn 

1. List of possible states 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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State machine vs. sequential program 
model 

o  Different thought process used with each model 
o  State machine: 

n  Encourages designer to think of all possible states and 
transitions among states based on all possible input conditions 

o  Sequential program model: 
n  Designed to transform data through series of instructions that 

may be iterated and conditionally executed 
o  State machine description excels in many cases 

n  More natural means of computing in those cases 
n  Not due to graphical representation (state diagram) 

o  Would still have same benefits if textual language used (i.e., state 
table) 

o  Besides, sequential program model could use graphical 
representation (i.e., flowchart) 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Try Capturing Other Behaviors with an 
FSM 

o  E.g., Answering machine blinking light when 
there are messages 

o  E.g., A simple telephone answering machine that 
answers after 4 rings when activated 

o  E.g., A simple crosswalk traffic control light 
o  Others 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Capturing state machines in  
sequential programming language 

o  Despite benefits of state machine model, most popular 
development tools use sequential programming language 
n  C, C++, Java, Ada, VHDL, Verilog, etc. 
n  Development tools are complex and expensive, therefore not easy to 

adapt or replace 
o  Must protect investment 

o  Two approaches to capturing state machine model with sequential 
programming language 
n  Front-end tool approach 

o  Additional tool installed to support state machine language 
n  Graphical and/or textual state machine languages 
n  May support graphical simulation 
n  Automatically generate code in sequential programming language that is input to 

main development tool 
o  Drawback: must support additional tool (licensing costs, upgrades, training, 

etc.) 

n  Language subset approach 
o  Most common approach... 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Language subset approach 

o  Follow rules (template) for 
capturing state machine 
constructs in equivalent 
sequential language constructs 

o  Used with software (e.g.,C) and 
hardware languages (e.g.,VHDL) 

o  Capturing UnitControl state 
machine in C 
n  Enumerate all states (#define) 
n  Declare state variable initialized 

to initial state (IDLE) 
n  Single switch statement 

branches to current state’s case 
n  Each case has actions 

o  up, down, open, timer_start 
n  Each case checks transition 

conditions to determine next 
state 
o  if(…) {state = …;} 

#define IDLE0 
#define GOINGUP1 
#define GOINGDN2 
#define DOOROPEN3 
void UnitControl() { 
   int state = IDLE; 
   while (1) { 
      switch (state) { 
         IDLE: up=0; down=0; open=1; timer_start=0; 
            if   (req==floor) {state = IDLE;} 
            if   (req > floor) {state = GOINGUP;} 
            if   (req < floor) {state = GOINGDN;} 
            break; 
         GOINGUP: up=1; down=0; open=0; timer_start=0; 
            if   (req > floor) {state = GOINGUP;} 
            if   (!(req>floor)) {state = DOOROPEN;}  
            break; 
         GOINGDN: up=1; down=0; open=0; timer_start=0; 
            if   (req < floor) {state = GOINGDN;} 
            if   (!(req<floor)) {state = DOOROPEN;}  
            break; 
         DOOROPEN: up=0; down=0; open=1; timer_start=1; 
            if (timer < 10) {state = DOOROPEN;} 
            if (!(timer<10)){state = IDLE;} 
            break; 
      } 
   } 
} 

UnitControl state machine in sequential programming 
language 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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General template 

#define S0  0 
#define S1  1 
... 
#define SN  N 
void StateMachine() { 
   int state = S0; // or whatever is the initial state. 
   while (1) { 
      switch (state) { 
         S0:  
            // Insert S0’s actions here & Insert transitions Ti leaving S0: 
            if( T0’s condition is true ) {state = T0’s next state; /*actions*/ } 
            if( T1’s condition is true ) {state = T1’s next state; /*actions*/ } 
            ... 
            if( Tm’s condition is true ) {state = Tm’s next state; /*actions*/ } 
            break; 
         S1: 
            // Insert S1’s actions here 
            // Insert transitions Ti leaving S1 
            break; 
         ... 
         SN: 
            // Insert SN’s actions here 
            // Insert transitions Ti leaving SN 
            break; 
      } 
   } 
} 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Problems with Conventional FSM 

o  Sometimes over-specify implementation 
n  Sequencing is fully specified 

o  Scalability due to lack of metaphor for 
decomposition 
n  Number of states can be unmanageable 

o  No concurrency support 
o  No support for orthogonal connections 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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HCFSM and the Statecharts language 

o  Hierarchical/concurrent state machine 
model (HCFSM) 
n  Extension to state machine model to 

support hierarchy and concurrency 
n  States can be decomposed into 

another state machine 
o  With hierarchy has identical functionality 

as Without hierarchy, but has one less 
transition (z) 

o  Known as OR-decomposition 
n  States can execute concurrently 

o  Known as AND-decomposition 

o  Statecharts 
n  Graphical language to capture HCFSM 
n  timeout: transition with time limit as 

condition 
n  history: remember last substate OR-

decomposed state A was in before 
transitioning to another state B 
o  Return to saved substate of A when 

returning from B instead of initial state 

A1 z 
B 

A2 z 

x 
y w 

Without 
hierarchy 

A1 z 
B 

A2 

x y 

A 

w 

With hierarchy 

C1 

C2 

x y 

C 
B 

D1 

D2 

u v 

D 

Concurrency 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

UnitControl with FireMode 

o  FireMode  
n  When fire is true, move 

elevator to 1st floor and 
open door 

Without hierarchy 

Idle 

GoingUp 

req>floor 

req<floor 

!(req>floor) 

timeout(10) 

req<floor 

DoorOpen 

GoingDn 

req>floor 

u,d,o = 1,0,0 

u,d,o = 0,0,1 

u,d,o = 0,1,0 

req==floor 
!(req<floor) 

fire 
fire 

fire 
fire 

FireGoingDn 

floor>1 

u,d,o = 0,1,0 

u,d,o = 0,0,1 

!fire 

FireDrOpen 
floor==1 

fire 

u,d,o = 0,0,1 

UnitControl 

fire 

!fire FireGoingDn 

floor>1 

u,d,o = 0,1,0 

FireDrOpen 
floor==1 

fire 

FireMode 

u,d,o = 0,0,1 

With hierarchy 

Idle 

GoingUp 

req>floor 

req<floor 

!(req>floor) 

timeout(10) 

req<floor 

DoorOpen 

GoingDn 

req>floor 

u,d,o = 1,0,0 

u,d,o = 0,0,1 

u,d,o = 0,1,0 

req==floor 
!(req>floor) 

u,d,o = 0,0,1 

NormalMode 

UnitControl 

NormalMode 

FireMode 

fire !fire 

UnitControl 

ElevatorController 

RequestResolver 

... 

With concurrent 
RequestResolver 

 
–  w/o hierarchy: Getting messy!  
–  w/ hierarchy: Simple! 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Program-state machine model (PSM): HCFSM 
plus sequential program model 

o  Program-state’s actions can be FSM or 
sequential program 
n  Designer can choose most appropriate 

o  Stricter hierarchy than HCFSM used in 
Statecharts 
n  transition between sibling states only, 

single entry 
n  Program-state may “complete” 

o  Reaches end of sequential program 
code, OR 

o  FSM transition to special complete 
substate 

o  PSM has 2 types of transitions 
n  Transition-immediately (TI): taken 

regardless of source program-state 
n  Transition-on-completion (TOC): taken 

only if condition is true AND source 
program-state is complete 

n  SpecCharts: extension of VHDL to 
capture PSM model 

n  SpecC: extension of C to capture PSM 
model 

up = down = 0; open = 1; 
   while (1) { 
      while (req == floor); 
      open = 0; 
      if (req > floor) { up = 1;} 
      else {down = 1;} 
      while (req != floor); 
      open = 1; 
      delay(10); 
   } 
   } 
 

NormalMode 

FireMode 
up = 0; down = 1; open = 0; 
while (floor > 1); 
up = 0; down = 0; open = 1; 
 
 

fire !fire 

UnitControl 

ElevatorController 

RequestResolver 

... 
req = ... 
... 

int req; 

•  NormalMode and FireMode  described as 
sequential programs 

•  Black square originating within FireMode 
indicates !fire is a TOC transition 

–  Transition from FireMode to NormalMode 
only after FireMode completed 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Harel’s StateCharts: Extension of 
Conventional FSMs 

o  Conventional FSMs are inappropriate for the behavioral 
description of complex control 
n  Flat and unstructured 
n  Inherently sequential in nature 
n  Give rise to an exponential blow-up in # of states 

o  Small system extensions cause unacceptable growth in the 
number of states to be considered 

o  StateCharts support: 
n  Repeated decomposition of states into AND/OR sub-states  

o  Nested states, concurrency, orthogonal components 
n  Actions (may have parameters) 
n  Activities (functions executed as long as state is active) 
n  Guards 
n  History 
n  A synchronous (instantaneous broadcast) comm. mechanism 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Hierarchical FSM models 

o Problem: how to reduce the size of the representation?  
o Harel’s classical papers on StateCharts (language) and 

bounded concurrency (model): 3 orthogonal exponential 
reductions 

o Hierarchy: 
n State a “encloses” an FSM 
n Being in a means FSM in a is active 
n States of a are called OR states 
n Used to model pre-emption and exceptions 

o Concurrency:  
n Two or more FSMs are simultaneously active 
n States are called AND states 

o Non-determinism: 
n Used to abstract behavior 

error 

a 

recovery 

odd 

even 

done 

a1 a2 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Introducing hierarchy 

FSM will be in exactly one of 
the substates of S if S is 
active (either in A or in B or ..) 

o Classical automata not 
useful for complex systems 
(complex graphs cannot be 
understood by humans). 

o F Introduction of hierarchy 
FStateCharts [Harel, 1987] 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Features of StateCharts 

o  Nested states and hierarchy 
n  Improves scalability and understandability 
n  helps describing preemption 

o  Concurrency - two or more states can be viewed 
as simultaneously active 

o  Nondeterminism - there are properties which are 
irrelevant 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Definitions 

o  Current states of FSMs are also called active states. 
o  States which are not composed of other states are called 

basic states. 
o  States containing other states are called super-states. 
o  For each basic state s, the super-states containing s are 

called ancestor states. 
o  Super-states S are called OR-super-states, if exactly one of 

the sub-states of S is active whenever S is active. 

ancestor state of E 
superstate 

substates 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Default state mechanism 

o Try to hide internal 
structure from outside 
world! 
o F Default state 
o Filled circle 
indicates sub-state 
entered whenever 
super-state is entered. 
o Not a state by itself! 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

History mechanism 

o For input m, S enters the state it was in before S was left 
(can be A, B, C, D, or E). If S is entered for the very first time, 
the default mechanism applies. 
o History and default mechanisms can be used hierarchically. 

(behavior different 
from last slide) 

k m 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 



12/03/14	
  

16	
  

Combining history and default state 
mechanism 

same meaning 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Concurrency 

o Convenient ways of describing concurrency are required. 
o AND-super-states: FSM is in all (immediate) sub-states 
of a super-state; Example: 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Entering and leaving AND-super-states 

o Line-monitoring and key-monitoring are entered and left, 
when service switch is operated. 

incl. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Benefits of AND-decomposition 

V,W 

V,Z 

X,Z 

X,W 

V,Y 
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f 
[in(Y)] 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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AND/OR State Comparison 

o  AND-states have orthogonal state components 
n  AND-decomposition can be carried out on any level of states 

o  more convenient than allowing only one level of communicating FSMs 

o  OR-states have sub-states that are related to each other by 
exclusive-or (e.g. U, V) 

S 

T 

V 

e 

f 

f 

h 

g[c] 

S 

T 

V 

e 

f 

h 

g[c] 

U 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Timers 

o  Since time needs to be modeled in embedded systems, 
o  timers need to be modeled. 
o  In StateCharts, special edges can be used for timeouts. 

If event a does not happen while the system is in the left state for 20 
ms, a timeout will take place. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Using timers in answering machine 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

General form of edge labels 

o  The general syntax of an expression labeling a transition in 
a StateChart is n[c]/a, where 
n  n is the event that triggers the transition 
n  c is the condition that guards the transition 

(cannot be taken unless c is true when e occurs) 
n  a is the action that is carried out if and when the transition is 

taken 
o  Alternative: name(params)[guards]^event_list/action_list 

n  Event list, aka propagated transitions, is a list of transitions 
that occur in other concurrent state machines because of this 
transitions 

o  For each transition label, event condition and action are 
optional 
n  an event can be the changing of a value 
n  standard comparisons are allowed as conditions and 

assignment statements as actions 

event [condition] / action 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Transitions 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Conditional Transitions 

Source: B. P. Douglass & iLogix 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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StateCharts Actions and Events 

o  An action A on the edge leaving a state may also 
appear as an event triggering a transition going 
into an orthogonal state 
n  Executing the first transition will immediately 

cause the second transition to be taken 
simultaneously 

o  Actions and events may be associated to the 
execution of orthogonal components: 
n  action start(A) causes activity A to start 
n  event stopped(B) occurs when activity B stops 
n  entered(S), exited(S), in(S) etc. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Communication in Concurrent FSMs 

o  Broadcast events 
n  Events are received by more than one concurrent FSM 
n  Results in transitions of the same name in different FSM

  

o  Propagated transitions 
n  Transitions which are generated as a result of 

transitions in other FSMs 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Propagations and Broadcasts 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Order of Nested Actions 

o  Executed from outermost – in on entry 
o  Executed from innermost – out on exit 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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The StateCharts simulation phases 
(StateMate Semantics) 

o  How are edge labels evaluated? 

o  Three phases: 
1.  Effect of external changes on events and conditions 

is evaluated, 

2.  The set of transitions to be made in the current step 
and right hand sides of assignments are computed, 

3.  Transitions become effective, variables obtain new 
values. 

o  Separation into phases 2 and 3 guarantees 
deterministic and reproducible behavior.  

Example 

o  In phase 2, variables a and b are assigned to temporary 
variables. In phase 3, these are assigned to a and b. As a 
result, variables a and b are swapped. 

o  In a single phase environment, executing the left state first 
would assign the old value of b (=0) to a and b. Executing the 
right state first would assign the old value of a (=1) to a and 
b. The execution would be nondeterministic. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Reflects model of clocked hardware 

o In an actual clocked (synchronous) hardware 
system, both registers would be swapped as well. 

Same separation into phases found in other languages as 
well, especially those that are intended to model hardware. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Steps 

o Execution of a StateChart model consists of a 
sequence of (status, step) pairs 

Status= values of all variables + set of events + current time 
Step   = execution of the three phases (StateMate semantics) 

Status phase 2 

phase 3 

phase 1 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 



12/03/14	
  

25	
  

Evaluation of StateCharts 

o  Pros: 
n  Hierarchy allows arbitrary nesting of AND- and OR-super 

states. 
n  (StateMate-) Semantics defined in a follow-up paper to 

original paper. 
n  Large number of commercial simulation tools available 

(StateMate, StateFlow, BetterState, ...) 
n  Available „back-ends“ translate StateCharts into C or 

VHDL, thus enabling software or hardware 
implementations.  

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Evaluation of StateCharts 

o  Cons: 
n  Generated C programs frequently inefficient, 
n  Not useful for distributed applications, 
n  No program constructs, 
n  No description of non-functional behavior, 
n  No object-orientation, 
n  No description of structural hierarchy. 

Extensions: 
•  Module charts for description of structural hierarchy. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Example of the Power of StateChart 
Formalism 

o  Conflicting function & control behaviors 
n  Function: primary service of the entity 
n  Control: actions performed within the system context 

o  Solutions: single automaton, two peer concurrent states 

ReadyToSendA 

ReadyToSendB 

SendingA SendingB 

ackA/ 

ackB/ 

send/^B 

send/^A 
Uninitialized 

Initialized 

Operational 

Error 

reset/ 

stop/ start/ 

data/ 

reset/ 

error/ 

data/ 

The Combined State Machine in 
StateChart Formalism 

Uninitialized 

Initialized 

Operational 

Error 

reset/ 

stop/ start/ 

data/ 

reset/ 

error/ 

data/ 

ReadyToSendA 

ReadyToSendB 

SendingA SendingB 

ackA/ 

ackB/ 

send/^B 

send/^A 
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Concurrent Statecharts 

o  Many embedded systems consist of multiple threads, each 
running an FSM 

o  State charts allow the modeling of these parallel threads 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Concurrent Statecharts 

o  States S and T are active at the same time as 
long as X is active 
n  Either S.A or S.B must be active when S is active 
n  Either T.C, T.D or T.E must be active when T is active 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Concurrent Statecharts 

o  When X exits, both S and T exit 
n  If S exits first, the FSM containing X must wait until T exits 
n  If the two FSMs are always independent, then they must 

be enclosed at the highest scope 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Example Concurrent FSM 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Explicit Synchronization 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Example: Coke Machine Version 1.0 

o  Suppose you have a soda machine: 
n  When turned on, the machine waits for money 
n  When a quarter is deposited, the machine waits for 

another quarter 
n  When a second quarter is deposited, the machine waits 

for a selection 
n  When the user presses “COKE,” a coke is dispensed 
n  When the user takes the bottle, the machine waits again 
n  When the user presses either “SPRITE” or “DIET COKE,” 

a Sprite or a diet Coke is dispensed 
n  When the user takes the bottle, the machine waits again 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Coke Machine 1.0 

idle 50c 25c 

dispense 
coke 

dispense 
sprite 

dispense 
diet coke 

q q 

take 
bottle 

take 
bottle 

take 
bottle 

cb 

cs 

cd 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Coke Machine, Version 2.0 

o  Bottles can get stuck in the machine 
n  An automatic indicator will notify the system when a 

bottle is stuck 
n  When this occurs, the machine will not accept any 

money or issue any bottles until the bottle is cleared 
n  When the bottle is cleared, the machine will wait for 

money again 

o  State machine changes 
n  How many new states are required? 
n  How many new transitions? 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Coke machine 2.0 

idle 50c 25c 

dispense 
coke 

dispense 
sprite 

dispense 
diet coke 

q q 

take 
bottle 

take 
bottle 

take 
bottle 

cb 

cs 

cd 

stuck 
coke 

clear bottle 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Coke machine 2.0 

idle 50c 25c 

dispense 
coke 

dispense 
sprite 

dispense 
diet coke 

q q 

take 
bottle 

take 
bottle 

take 
bottle 

cb 

cs 

cd 

stuck 
bottle 

clear bottle 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Coke Machine, Version 2.1 

o  Bottles sometimes shake loose 
n  An additional, automatic indicator will indicate that the 

bottle is cleared 
n  When the bottles are cleared, the machine will return to 

the same state it was in before the bottle got stuck 

o  State machine changes 
n  How many new states are required? 
n  How many new transitions? 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Coke Machine, Version 3.0 

o  Automatic bottle filler 
n  If a button is pressed, the machine will toggle between 

bottle filling and dispensing modes 
n  When in bottle filling mode: 

o  Bottles may be inserted if the Coke machine is ready 
o  When a bottle is inserted, the machine will NOT be ready 

to accept another bottle and will check the bottle 
o  If the bottle check finds a Coke was inserted, it will signal 

Coke_OK and return to ready 
o  If the bottle check finds a Diet Coke was inserted, the coke 

machine will signal Diet_OK and return to ready 
o  Otherwise, the bottle will be immediately dispensed 

o  State machine changes 
n  How many new states are required? 
n  How many new transitions? 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Bottle Dispenser 

dispensing collecting 

button 

take bottle 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Bottle dispenser 

dispensing collecting 

take bottle 

idle 
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cd 
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Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Bottle Dispenser 

dispensing collecting 

take bottle 
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sprite 

dispense 
diet coke 
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Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Adding History 
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Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Adding Conditionals 
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Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

StateChart Example – TV Controller 

o  8 channels 
o  Buttons: 

n  Standby 
n  Channel: +/– 
n  Volume: Δ+, Δ– 
n  Contrast/Color/ 
n  Brightness: ρ 
n  Pict. Adjust: ≡+, ≡– 

o  Missing details for:  
n  volume / 
n  brightness / color / 
n  contrast selection 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Example – TV 
Remote 

o  Independent states 
n  Timer 
n  Channel – split into 

two states 
n  Sound 
n  Clock 

 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 

Conclusions  

o  Finite State machines 
n  Simple 
n  Many formal properties 
n  Problem – too many states => Hierarchy 

o  StateChart 
n  StateMate – Design environment for reactive systems 
n  Behavioral modeling language for StateMate 
n  Extends FSMs to better handle concurrency 
n  Adds conditional statements, memory to FSM 

o  Further Reading: 
n  D. Harel, Statecharts: A Visual Formalism for Complex 

Systems, Science of Computer  Programming, vol. 8 
(1987) 231 - 274. 

n  D. Harel et al., STATEMATE: A working environment for 
the development of complex reactive systems, IEEE 
Transactions on Software Eng.,vol. 16 (1990), no. 4, 
403 - 414. 

Source: ECE 253 Embedded System Design. Ryan Kastner, January 24, 2007. ExPRESS Lab at UC Santa Barbara 
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Role of appropriate model and language 

o  Finding appropriate model to capture embedded system is an 
important step 
n  Model shapes the way we think of the system 

o  Originally thought of sequence of actions, wrote sequential program 
n  First wait for requested floor to differ from target floor 
n  Then, we close the door 
n  Then, we move up or down to the desired floor 
n  Then, we open the door 
n  Then, we repeat this sequence 

o  To create state machine, we thought in terms of states and transitions 
among states 
n  When system must react to changing inputs, state machine might be best model 

§  HCFSM described FireMode easily, clearly 

o  Language should capture model easily 
n  Ideally should have features that directly capture constructs of model 
n  FireMode would be very complex in sequential program 

o  Checks inserted throughout code 
n  Other factors may force choice of different model 

o  Structured techniques can be used instead 
n  E.g., Template for state machine capture in sequential program 

language 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Concurrent processes and real-time 
systems 
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Concurrent processes or tasks 

o  Consider two examples 
having separate tasks 
running independently 
but sharing data 

o  Difficult to write system 
using sequential 
program model 

o  Concurrent process 
model easier 
n  Separate sequential 

programs (processes) 
for each task 

n  Programs communicate 
with each other 

Heartbeat Monitoring 
System 

B[1..4] 
 
 
 
 

Heart-beat 
pulse 

Task 1: 
Read pulse 
If pulse < Lo then 
    Activate Siren 
If pulse > Hi then 
    Activate Siren 
Sleep 1 second 
Repeat 

Task 2: 
If B1/B2 pressed 
then 
    Lo = Lo +/– 1 
If B3/B4 pressed 
then 
    Hi = Hi +/– 1 
Sleep 500 ms 
Repeat 

Set-top Box 

Input 
Signa
l 

Task 1: 
Read Signal 
Separate Audio/
Video 
Send Audio to 
Task 2 
Send Video to 
Task 3 
Repeat 

Task 2: 
Wait on Task 1 
Decode/output Audio 
Repeat 

Task 3: 
Wait on Task 1 
Decode/output Video 
Repeat 

Video 
 
 
Audio 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Process (or Tasks) 

o  A sequential program, typically an infinite loop 
n  Executes concurrently with other processes 
n  We are about to enter the world of “concurrent programming” 

o  Basic operations on tasks 
n  Create and terminate 

o  Create is like a procedure call but caller doesn’t wait 
n  Created process can itself create new processes 

o  Terminate kills a process, destroying all data 
n  Suspend and resume 

o  Suspend puts a process on hold, saving state for later execution 
o  Resume starts the process again where it left off 

n  Join 
o  A process suspends until a particular child process finishes 

execution 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Communication among processes 

o  Processes need to communicate 
data and signals to solve their 
computation problem 
n  Processes that don’t communicate 

are just independent programs 
solving separate problems 

o  Basic example: producer/consumer 
n  Process A produces data items, 

Process B consumes them 
n  E.g., A decodes video packets, B 

display decoded packets on a screen 
o  How do we achieve this 

communication? 
n  Two basic methods 

o  Shared memory 
o  Message passing 

 processA() { 
  // Decode packet 
  // Communicate packet 
to B 
  } 
} 

void processB() { 
  // Get packet from A 
  // Display packet 
} 

Encoded video 
packets 

Decoded video 
packets 

To display 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Shared Memory 

o  Processes read and write shared 
variables 
n  No time overhead, easy to implement 
n  But, hard to use – mistakes are 

common 
o  Example: Producer/consumer with a mistake 

n  Share buffer[N], count 
o  count = # of valid data items in buffer 

n  processA produces data items and stores in buffer 
o  If buffer is full, must wait 

n  processB consumes data items from buffer 
o  If buffer is empty, must wait 

n  Error when both processes try to update count 
concurrently (lines 10 and 19) and the following 
execution sequence occurs. Say “count” is 3. 
o  A loads count (count = 3) from memory into register R1 (R1 = 

3) 
o  A increments R1 (R1 = 4) 
o  B loads count (count = 3) from memory into register R2 (R2 = 

3) 
o  B decrements R2 (R2 = 2) 
o  A stores R1 back to count in memory (count = 4) 
o  B stores R2 back to count in memory (count = 2) 

n  count now has incorrect value of 2 

01: data_type buffer[N]; 
02: int count = 0; 
03: void processA() { 
04:   int i; 
05:   while( 1 ) { 
06:     produce(&data); 
07:     while( count == N );/*loop*/ 
08:     buffer[i] = data; 
09:     i = (i + 1) % N; 
10:     count = count + 1; 
11:   } 
12: } 
13: void processB() { 
14:   int i; 
15:   while( 1 ) { 
16:     while( count == 0 );/*loop*/ 
17:     data = buffer[i]; 
18:     i = (i + 1) % N; 
19:     count = count - 1; 
20:     consume(&data); 
21:   } 
22: } 
23: void main() { 
24:   create_process(processA);  
25:   create_process(processB); 
26: } 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Message Passing 

o  Message passing 
n  Data explicitly sent from one process 

to another 
o  Sending process performs special 

operation, send 
o  Receiving process must perform 

special operation, receive, to receive 
the data 

o  Both operations must explicitly 
specify which process it is sending to 
or receiving from 

o  Receive is blocking, send may or may 
not be blocking 

n  Safer model, but less flexible 

void processA() { 
  while( 1 ) { 
    produce(&data) 
    send(B, &data); 
    /* region 1 */ 
    receive(B, &data); 
    consume(&data); 
  } 
} 
void processB() { 
  while( 1 ) { 
    receive(A, &data); 
    transform(&data) 
    send(A, &data); 
    /* region 2 */ 
  } 
} 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Back to Shared Memory: Mutual Exclusion 

o  Certain sections of code should not be performed concurrently 
n  Critical section 

o  Possibly noncontiguous section of code where simultaneous updates, by 
multiple processes to a shared memory location, can occur 

o  When a process enters the critical section, all other processes 
must be locked out until it leaves the critical section 
n  Mutex 

o  A shared object used for locking and unlocking segment of shared data 
o  Disallows read/write access to memory it guards 
o  Multiple processes can perform lock operation simultaneously, but only one 

process will acquire lock 
o  All other processes trying to obtain lock will be put in blocked state until 

unlock operation performed by acquiring process when it exits critical 
section 

o  These processes will then be placed in runnable state and will compete for 
lock again 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Correct Shared Memory Solution to the 
Consumer-Producer Problem 

o  The primitive mutex is used to ensure critical 
sections are executed in mutual exclusion of 
each other 

o  Following the same execution sequence as 
before: 
n  A/B execute lock operation on count_mutex 
n  Either A or B will acquire lock 

o  Say B acquires it 
o  A will be put in blocked state 

n  B loads count (count = 3) from memory into 
register R2 (R2 = 3) 

n  B decrements R2 (R2 = 2) 
n  B stores R2 back to count in memory (count = 

2) 
n  B executes unlock operation 

o  A is placed in runnable state again 
n  A loads count (count = 2) from memory into 

register R1 (R1 = 2) 
n  A increments R1 (R1 = 3) 
n  A stores R1 back to count in memory (count = 

3) 
o  Count now has correct value of 3 

01: data_type buffer[N]; 
02: int count = 0; 
03: mutex count_mutex; 
04: void processA() { 
05:   int i; 
06:   while( 1 ) { 
07:     produce(&data); 
08:     while( count == N );/*loop*/ 
09:     buffer[i] = data; 
10:     i = (i + 1) % N; 
11:     count_mutex.lock(); 
12:     count = count + 1; 
13:     count_mutex.unlock(); 
14:   } 
15: } 
16: void processB() { 
17:   int i; 
18:   while( 1 ) { 
19:     while( count == 0 );/*loop*/ 
20:     data = buffer[i]; 
21:     i = (i + 1) % N; 
22:     count_mutex.lock(); 
23:     count = count - 1; 
24:     count_mutex.unlock(); 
25:     consume(&data); 
26:   } 
27: } 
28: void main() { 
29:   create_process(processA);  
30:   create_process(processB); 
31: } 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Process Communication 

o  Try modeling “req” value of our 
elevator controller 
n  Using shared memory 
n  Using shared memory and 

mutexes 
n  Using message passing  

buttons 
inside 
elevator 
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A Common Problem in Concurrent 
Programming: Deadlock 

o  Deadlock: A condition where 2 or more 
processes are blocked waiting for the other to 
unlock critical sections of code 
n  Both processes are then in blocked state 
n  Cannot execute unlock operation so will wait 

forever 
o  Example code has 2 different critical sections of 

code that can be accessed simultaneously 
n  2 locks needed (mutex1, mutex2) 
n  Following execution sequence produces deadlock 

o  A executes lock operation on mutex1 (and acquires it) 
o  B executes lock operation on mutex2( and acquires it) 
o  A/B both execute in critical sections 1 and 2, 

respectively 
o  A executes lock operation on mutex2 

n  A blocked until B unlocks mutex2 
o  B executes lock operation on mutex1 

n  B blocked until A unlocks mutex1 
o  DEADLOCK! 

o  One deadlock elimination protocol requires 
locking of numbered mutexes in increasing 
order and two-phase locking (2PL) 
n  Acquire locks in 1st phase only, release locks in 2nd 

phase 

01: mutex mutex1, mutex2; 
02: void processA() { 
03:   while( 1 ) { 
04:     … 
05:     mutex1.lock(); 
06:     /* critical section 1 */ 
07:     mutex2.lock(); 
08:     /* critical section 2 */ 
09:     mutex2.unlock(); 
10:     /* critical section 1 */ 
11:     mutex1.unlock(); 
12:   } 
13: } 
14: void processB() { 
15:   while( 1 ) { 
16:     … 
17:     mutex2.lock(); 
18:     /* critical section 2 */ 
19:     mutex1.lock(); 
20:     /* critical section 1 */  
21:     mutex1.unlock(); 
22:     /* critical section 2 */ 
23:     mutex2.unlock(); 
24:   } 
25: } 
 
 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Synchronization among processes 

o  Sometimes concurrently running processes must 
synchronize their execution 
n  When a process must wait for: 

o  another process to compute some value 
o  reach a known point in their execution 
o  signal some condition 

o  Recall producer-consumer problem 
n  processA must wait if buffer is full 
n  processB must wait if buffer is empty 
n  This is called busy-waiting 

o  Process executing loops instead of being blocked 
o  CPU time wasted 

o  More efficient methods 
n  Join operation, and blocking send and receive discussed earlier 

o  Both block the process so it doesn’t waste CPU time 
n  Condition variables and monitors 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  



12/03/14	
  

43	
  

Condition variables 

o  Condition variable is an object that has 2 operations, signal and 
wait 

o  When process performs a wait on a condition variable, the process 
is blocked until another process performs a signal on the same 
condition variable 

o  How is this done? 
n  Process A acquires lock on a mutex 
n  Process A performs wait, passing this mutex 

o  Causes mutex to be unlocked 
n  Process B can now acquire lock on same mutex 
n  Process B enters critical section 

o  Computes some value and/or make condition true 
n  Process B performs signal when condition true 

o  Causes process A to implicitly reacquire mutex lock 
o  Process A becomes runnable 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Condition variable example: 
consumer-producer 

o  2 condition variables 
n  buffer_empty 

o  Signals at least 1 free location available 
in buffer 

n  buffer_full 
o  Signals at least 1 valid data item in 

buffer 
o  processA:  

n  produces data item 
n  acquires lock (cs_mutex) for critical section 
n  checks value of count 
n  if count = N, buffer is full 

o  performs wait operation on 
buffer_empty 

o  this releases the lock on cs_mutex 
allowing processB to enter critical 
section, consume data item and free 
location in buffer 

o  processB then performs signal 
n  if count < N, buffer is not full 

o  processA  inserts data into buffer  
o  increments count 
o  signals processB making it runnable if it 

has performed a wait operation on 
buffer_full 

01: data_type buffer[N]; 
02: int count = 0; 
03: mutex cs_mutex; 
04: condition buffer_empty, buffer_full; 
06: void processA() { 
07:   int i; 
08:   while( 1 ) { 
09:     produce(&data); 
10:     cs_mutex.lock(); 
11:     if( count == N ) buffer_empty.wait(cs_mutex); 
13:     buffer[i] = data; 
14:     i = (i + 1) % N; 
15:     count = count + 1; 
16:     cs_mutex.unlock(); 
17:     buffer_full.signal(); 
18:   } 
19: } 
20: void processB() { 
21:   int i; 
22:   while( 1 ) { 
23:     cs_mutex.lock(); 
24:     if( count == 0 ) buffer_full.wait(cs_mutex); 
26:     data = buffer[i]; 
27:     i = (i + 1) % N; 
28:     count = count - 1; 
29:     cs_mutex.unlock(); 
30:     buffer_empty.signal(); 
31:     consume(&data); 
32:   } 
33: } 
34: void main() { 
35:   create_process(processA); create_process(processB); 
37: } 
 

Consumer-producer using condition variables 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Concurrent process model:  
implementation 

o  Can use single and/or general-purpose 
processors 

o  (a) Multiple processors, each executing 
one process 
n  True multitasking (parallel processing) 
n  General-purpose processors 

o  Use programming language like C and 
compile to instructions of processor 

o  Expensive and in most cases not necessary 
n  Custom single-purpose processors 

o  More common 

o  (b) One general-purpose processor 
running all processes 
n  Most processes don’t use 100% of 

processor time 
n  Can share processor time and still achieve 

necessary execution rates 
o  (c) Combination of (a) and (b) 

n  Multiple processes run on one general-
purpose processor while one or more 
processes run on own single_purpose 
processor 
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Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Implementation:  
multiple processes sharing single processor 

o  Can manually rewrite processes as a single sequential program 
n  Ok for simple examples, but extremely difficult for complex examples 
n  Automated techniques have evolved but not common 
n  E.g., simple Hello World concurrent program from before would look like: 

I = 1; T = 0; 
while (1) { 

 Delay(I); T = T + 1; 
 if X modulo T is 0 then call PrintHelloWorld 
 if Y modulo T is 0 then call PrintHowAreYou 

} 
o  Can use multitasking operating system 

n  Much more common 
n  Operating system schedules processes, allocates storage, and interfaces to 

peripherals, etc. 
n  Real-time operating system (RTOS) can guarantee execution rate constraints 

are met 
n  Describe concurrent processes with languages having built-in processes (Java, 

Ada, etc.) or a sequential programming language with library support for 
concurrent processes (C, C++, etc. using POSIX threads for example) 

o  Can convert processes to sequential program with process scheduling right 
in code 
n  Less overhead (no operating system) 
n  More complex/harder to maintain 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Processes vs. threads 

o  Different meanings when operating system terminology 
o  Regular processes 

n  Heavyweight process 
n  Own virtual address space (stack, data, code) 
n  System resources (e.g., open files) 

o  Threads 
n  Lightweight process 
n  Subprocess within process 
n  Only program counter, stack, and registers 
n  Shares address space, system resources with other threads 

o  Allows quicker communication between threads 
n  Small compared to heavyweight processes 

o  Can be created quickly 
o  Low cost switching between threads 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Implementation: 
suspending, resuming, and joining 

o  Multiple processes mapped to single-purpose processors 
n  Built into processor’s implementation 
n  Could be extra input signal that is asserted when process 

suspended 
n  Additional logic needed for determining process completion 

o  Extra output signals indicating process done 

o  Multiple processes mapped to single general-purpose 
processor 
n  Built into programming language or special multitasking library 

like POSIX 
n  Language or library may rely on operating system to handle 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Implementation: process scheduling 

o  Must meet timing requirements when multiple concurrent 
processes implemented on single general-purpose 
processor 
n  Not true multitasking 

o  Scheduler 
n  Special process that decides when and for how long each 

process is executed 
n  Implemented as preemptive or nonpreemptive scheduler 
n  Preemptive 

o  Determines how long a process executes before preempting to 
allow another process to execute 
n  Time quantum: predetermined amount of execution time preemptive 

scheduler allows each process (may be 10 to 100s of milliseconds long) 

o  Determines which process will be next to run 
n  Nonpreemptive 

o  Only determines which process is next after current process 
finishes execution 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Scheduling: priority 

o  Process with highest priority always selected first by scheduler 
n  Typically determined statically during creation and dynamically during 

execution 
o  FIFO 

n  Runnable processes added to end of FIFO as created or become 
runnable 

n  Front process removed from FIFO when time quantum of current 
process is up or process is blocked 

o  Priority queue 
n  Runnable processes again added as created or become runnable 
n  Process with highest priority chosen when new process needed 
n  If multiple processes with same highest priority value then selects 

from them using first-come first-served 
n  Called priority scheduling when nonpreemptive 
n  Called round-robin when preemptive 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Priority assignment 

o  Period of process 
n  Repeating time interval the process must complete one 

execution within 
o  E.g., period = 100 ms  
o  Process must execute once every 100 ms 

n  Usually determined by the description of the system 
o  E.g., refresh rate of display is 27 times/sec 
o  Period = 37 ms 

o  Execution deadline 
n  Amount of time process must be completed by after it has 

started 
o  E.g., execution time = 5 ms, deadline = 20 ms, period = 100 ms 
o  Process must complete execution within 20 ms after it has begun 

regardless of its period 
o  Process begins at start of period, runs for 4 ms then is preempted 
o  Process suspended for 14 ms, then runs for the remaining 1 ms 
o  Completed within 4 + 14 + 1 = 19 ms which meets deadline of 

20 ms 
o  Without deadline process could be suspended for much longer 

o  Rate monotonic scheduling 
n  Processes with shorter periods have higher priority 
n  Typically used when execution deadline = period 

o  Deadline monotonic scheduling 
n  Processes with shorter deadlines have higher priority 
n  Typically used when execution deadline < period 
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Real-time systems 

o  Systems composed of 2 or more cooperating, concurrent 
processes with stringent execution time constraints 
n  E.g., set-top boxes have separate processes that read or 

decode video and/or sound concurrently and must decode 20 
frames/sec for output to appear continuous 

n  Other examples with stringent time constraints are: 
o  digital cell phones 
o  navigation and process control systems 
o  assembly line monitoring systems 
o  multimedia and networking systems  
o  etc. 

n  Communication and synchronization between processes for 
these systems is critical 

n  Therefore, concurrent process model best suited for describing 
these systems 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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Real-time operating systems (RTOS) 

o  Provide mechanisms, primitives, and guidelines for building real-time 
embedded systems 

o  Windows CE 
n  Built specifically for embedded systems and appliance market 
n  Scalable real-time 32-bit platform 
n  Supports Windows API 
n  Perfect for systems designed to interface with Internet 
n  Preemptive priority scheduling with 256 priority levels per process 
n  Kernel is 400 Kbytes 

o  QNX 
n  Real-time microkernel surrounded by optional processes (resource managers) 

that provide POSIX and UNIX compatibility 
o  Microkernels typically support only the most basic services 
o  Optional resource managers allow scalability from small ROM-based systems to huge 

multiprocessor systems connected by various networking and communication 
technologies 

n  Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-
driven scheduling 

n  32 priority levels per process 
n  Microkernel < 10 Kbytes and complies with POSIX real-time standard 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  

Summary 

o  Computation models are distinct from languages 
o  Sequential program model is popular 

n  Most common languages like C support it directly 
o  State machine models good for control 

n  Extensions like HCFSM provide additional power 
n  PSM combines state machines and sequential programs 

o  Concurrent process model for multi-task systems 
n  Communication and synchronization methods exist 
n  Scheduling is critical 

Source: Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis  
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LCD (Liquid Crystal Display) 

o  LCD Panel is based on  
n  A light valve for each pixel that 

turn the light on, off, or an 
intermediate level. 

o  Grid of such light valve for the 
LCD display panel. 

o  A back light and display 
enhancement films create the 
illumination. 

Source: Computer Graphics Course. Department of Computer Science , Ben-Gurion University of the Negev, Israel 

 
Figures are curtsy of 3M 

About Liquid Crystal 

o  Liquid crystal molecules 
can move freely while 
maintaining their 
orientation. 

o  It align itself to a polyimide 
film to the inside of a panel 
glass. 

o  When the two glass panels 
are not aligned the liquid 
crystal twists accordingly. 

o  The liquid crystal will also 
align to electric field. 

Source: Computer Graphics Course. Department of Computer Science , Ben-Gurion University of the Negev, Israel 
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TFT stands for thin film transistor.  A TFT is actually a component of a an LCD designed to improve the quality and 
control of the LCD display. It is basically a tiny transistor linked to each individual pixel on the screen.  In today’s 
marketplace, TFT technology provides the best resolution of all the flat-panel techniques. TFT screens are sometimes 
called active-matrix LCDs. 
 

T  = thin 

F  = film 

T  = transistor 

What Does TFT Stand For? 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 

A TFT uses liquid crystal to control the passage of light. The basic structure of a TFT-LCD panel may be thought of as 
two pieces of glass with a layer of liquid crystal between them. The front glass is fitted with a color filter, while the back 
glass has transistors on it. When voltage is applied to a transistor, the liquid crystal is bent, allowing light to pass 
through to form a pixel. A light source, in many cases an LED, is located at the back of the panel and is what ,makes 
up the backlight. The front glass is fitted with a color filter, which gives each pixel its own color. The combination of 
these pixels in different colors forms the image on the panel. 

Polarizer 
Color filter 
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Bonding Pad 

Seal 

Black Matrix 

LCD Crystals 

Polarizer 

Pixel Electrode 
Layer (ITO) 

Spacer 

Pixel Electrode 
Layer (ITO) 
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Alignment Layer 

TFT 

Backlight 

How TFT Technology Works 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 
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A TFT panel array contains a specific number of pixels, often known as subpixels. Thousands or millions of these unit 
pixels together create an image on the display. This diagram shows the simple structure of a sub-pixel.  Each unit pixel 
contains a TFT, a pixel electrode or ITO and microscopic storage capacitors.  Each unit pixel is connected to one of 
the gate bus lines and one of the data bus lines in a matrix format.  This allows for easy individual pixel addressing.  
TFT devices are switching devices, which function to turn each individual pixel on or off thereby controlling the number 
of electrons that flow into the ITO zone. As the number of electrons reaches the expected value, TFT turns off and 
these electrons can be kept within the ITO zone. 

ITO 

Data Signal Line 
Data Signal Line 

Gate Line 

Gate Line 

How TFT Technology Works 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 

When power is applied to bend the liquid crystal, light passes through from the backlight into the color filter.  How 
much light that passes through depends on the amount of power applied to the pixel.  If there were no color filter, the 
output would be in the form of a grayscale.  The color filter is an RGB (red, green and blue) stripe.  One set of three 
subpixels makes up one unit pixel.  The white light from the backlight passes through the color filter and outputs all 
three colors; the intensity of which depends on how far the liquid crystal gets bent.  The human eye cannot resolve 
each color from a tiny pixel; instead the brain mixes the 3 colors together to give the appearance of the combined 
color (such as mixing red and blue to make purple). 

Color Filters 

Illustration represents one pixel. 

How Do TFT’s Generate Color? 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 



12/03/14	
  

52	
  

How Do TFT’s Generate Color? 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 

Monochromatic displays consist of a passive-matrix structure utilizing super-twisted nematic fluid with no switching 
devices. Most of the monochromatic displays offer black and white images except for the color STN types which offers 
16 colors only. Slow response time and less contrast are typical of passive-matrix addressed LCDs. TFTs consist of an 
active matrix structure utilizing a layer of transistors for addressing each pixel. TFT offers full color capability, high 
pixel resolution and good contrast.  

One Pixel Three 
subpixels 

Difference Between Monochromatic and TFT 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 
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Due to the simplicity in construction of a monochromatic LCD, they are ideal for text and static image on the screen 
with no color. TFTs are a bit more complex in construction compared to a monochromatic display, therefore TFT 
require more data input in order to display full color dynamic video on the screen.  

Transitioning from Monochromatic to TFT 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 

TFT applications are including touch screen capability in order to make the user interface more friendly.  There are two 
primary types of touch screens: resistive and capacitive.  Simply, resistive touch screens use two thin layers of a 
metallic membrane with a gap in between the two.  A person touching the screen at a specific point compresses the 
outer layer until it touches the other layer.   This technology is relatively inexpensive, however it can also be fragile.  
Environments, such as medical equipment, require resistive touch screens because they are easy to clean, maintain 
and do no register false readings. 

Spacers 

Resistive touch screen displays  
have multiple layers that are 
separated by thin spacers.  
 
Resistive type touch screens require 
more pressure to activate than 
capacitive touch screens.  Inner metallic 

membrane 

Outer metallic 
membrane 

Capacitive vs. Resistive TFT Technology 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 
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Capacitive touch screens are similar to resistive touch screens in that they have multiple layers.  With capacitive touch 
screen technology, the outer layer is an insulator and the inner layer is conductive.  When the finger touched the outer 
layer, it changes the capacitance and registers a touch. Capacitive touch screens, due to their nature, require the bare 
finger and can register false touches, but are more impact resistant. Capacitive touch screens are generally more 
expensive than resistive touch screens due to their relative robustness. 

Capacitive touch screen displays can 
be controlled with very light touches 
and are therefore subject to suffer 
from ‘false’ touches. 

Inner metallic 
membrane 

Outer metallic 
membrane 

Capacitive vs. Resistive TFT Technology 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 

There are several advantages to TFT technology, including space savings, enhanced resolution and finer quality.  Of 
all the flat panel technologies available, TFT displays offer tremendous space savings.  A Lumex InfoVue TFT module, 
for instance, starts at an industry-leading 3mm in width.  In addition, TFT displays provide a finer imaging quality with 
less glare and flicker for a reduction in eye strain to the end user.  TFT displays also offer a more vibrant color and 
response time than other color LCD technologies.  

•  Space savings 

•  Finer imaging quality 

•  Less glare and flicker 

•  More vibrant color 

•  Increased response time 

Advantages of TFT 

Source: Lumex (http://www.lumex.com) - LED and LCD technology 
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Controlador TFT SPFD5408B 

o  Caracerísticas del controlador de TFT 
n  Resolución de 320 x 240 pixels con 18 bits por pixel (256K colores) 
n  Diferentes modos de comunicación (18 bits, 16 bits, 8 bits, SPI) 

o  En el módulo HY28A - LCDA fijado el modo 16 bits por hardware 

o  Registros de control 
n  Dispone de más de 50 registros de control  

o  Memoria CGRAM (Memoria gráfica) 
n  Contiene la información de los 320x240 pixels con 18 bits de información por 

pixel 
n  Representa la información que es presentada en el display. 

Controlador TFT SPFD5408B 
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Controlador TFT SPFD5408B 

Graphics RAM (GRAM):  172800 bytes (240 x 320 x 18 / 8 bytes) 

Controlador TFT SPFD5408B 
o  Líneas de control 

n  RS indica si se escribe en el puntero de registro o en el registro 
apuntado por el puntero. 
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Controlador TFT SPFD5408B 
o  Líneas de control 

n  RS indica si se escribe en el puntero de registro o en el registro 
apuntado por el puntero. 

Controlador TFT SPFD5408B 
o  Configuración del modo de comunicación 

16 bits 
 
8 bits 
 
SPI 
 
 
 
 
 
18 bits 
9 bits 
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Controlador TFT SPFD5408B 
o  Acceso los Registros de Configuración 

n  Hay más de 50 registros de configuración de 16 bits 
n  Para escribir en un registro primero hay que escribir un puntero que 

apunte al registro 
n  La escritura en el puntero al registro (Index Register) o en el registro 

apuntado por el puntero se controla con el pin RS 
o  RS = 0 à El dato se escribe en el Index Register (Puntero) 
o  RS = 1 à El dato se escribe en el registro apuntado por el Index Register 

Controlador TFT SPFD5408B 
o  Ejemplo de registro de control: R03h – Entry Mode 

n  Entre otras cosas permite configurar la orientación de la 
visualización. 
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Controlador TFT SPFD5408B 
o  Acceso a la CGRAM 

n  Se debe especificar el puntero de acceso a la CGRAM (R20h y R21h) 
y luego escribir o leer 

n  Con cada lectura o escritura se autoincrementa el puntero 
n  Cada fila sólo tiene útiles 240 (0x0000-0x00EF) (0x0100-0x01EF)… 

Controlador TFT SPFD5408B 
o  Acceso mediante un bus paralelo de 16 bits 

n  Modo 64K colores à 16 bits por pixel 
o  Cada pixel necesita una palabra de 16 bits 
o  Se pierde la resolución del bit menos significativo del R y del B 

n  El modo se controla con la información del registro “Entry Mode (R03H) 
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Controlador TFT SPFD5408B 
o  Acceso mediante un bus paralelo de 16 bits 

n  Modo 256K colores à 18 bits por pixel 
o  Cada pixel necesita dos transferencias de 16 bits 
o  Hay dos modos de distribuir la información en las dos palabras 

Conexión Controlador TFT SPFD5408B 
o  Temporización de lectura y escritura del bus paralelo 
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Controlador TFT SPFD5408B 

o  Acceso mediante SPI 
n  Transferencia de 24 bits (3 bytes) 

o  (6 bits) Identificador de dispositivo 
o  Bit RS  
o  Bit RW 
o  Dato de 16 bits 

Controlador TFT SPFD5408B 

o  Acceso mediante SPI 
n  La lectura de los registros está disponible en el segundo byte 
n  La lectura de la RAM está disponible en el séptimo byte 
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Controlador TFT SPFD5408B 

o  Acceso mediante SPI 
n  Formato de los bits de Datos 

Controlador TFT SPFD5408B 
o  Acceso mediante SPI 

n  Escritura y Lectura de un Byte 
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Controlador TFT SPFD5408B 
o  Acceso mediante SPI 

n  Escritura del “Index Register” (RS=0, RW=0) 
o  El “Index Register” es de 8 bits 

n  Escritura del un datos donde apunta “Index Register” (RS=1, RW=0) 
o  El  contenido de los registros es de 16 bits 

Controlador TFT SPFD5408B 
o  Acceso mediante SPI 

n  Escritura en un registro 

n  Lectura de un registro (RS=1, RW=0) 
o  Los registros son de 16 bits 


